Answer:
12 servings
Step-by-step explanation:
Luke's turkey chili recipe calls for 2.5 pounds of ground turkey for every 5 servings. How many servings can he make if he has 6 pounds of ground turkey?
From above question:
2.5 pounds of ground turkey = 5 servings
6 pounds of ground turkey = x
Cross Multiply
2.5 × x = 6 × 5
x = 6 × 5/2.5
x = 12 servings
Hence, 6 pounds of ground turkey can make 12 servings.
Completing the explanation.
The equation is
5x = 2.5y
where:
x = represent how many pounds of ground turkey he has = 6 pounds
y = to represent how many servings he can make
Hence,
5 × 6 = 2.5y
y = 5 × 6/2.5
y = 12 servings
Answer:

Step-by-step explanation:
Given
![\int\limits {x^2\cdot e^{-4x}} \, dx = -\frac{1}{64}e^{-4x}[Ax^2 + Bx + E]C](https://tex.z-dn.net/?f=%5Cint%5Climits%20%7Bx%5E2%5Ccdot%20e%5E%7B-4x%7D%7D%20%5C%2C%20dx%20%20%3D%20-%5Cfrac%7B1%7D%7B64%7De%5E%7B-4x%7D%5BAx%5E2%20%2B%20Bx%20%2B%20E%5DC)
Required
Find 
We have:
![\int\limits {x^2\cdot e^{-4x}} \, dx = -\frac{1}{64}e^{-4x}[Ax^2 + Bx + E]C](https://tex.z-dn.net/?f=%5Cint%5Climits%20%7Bx%5E2%5Ccdot%20e%5E%7B-4x%7D%7D%20%5C%2C%20dx%20%20%3D%20-%5Cfrac%7B1%7D%7B64%7De%5E%7B-4x%7D%5BAx%5E2%20%2B%20Bx%20%2B%20E%5DC)
Using integration by parts

Where
and 
Solve for du (differentiate u)

Solve for v (integrate dv)

So, we have:




-----------------------------------------------------------------------
Solving

Integration by parts
---- 
---------- 
So:



So, we have:

![\int\limits {x^2\cdot e^{-4x}} \, dx = -\frac{x^2}{4}e^{-4x} +\frac{1}{2} [ -\frac{x}{4}e^{-4x} -\frac{1}{4}e^{-4x}]](https://tex.z-dn.net/?f=%5Cint%5Climits%20%7Bx%5E2%5Ccdot%20e%5E%7B-4x%7D%7D%20%5C%2C%20dx%20%20%3D%20-%5Cfrac%7Bx%5E2%7D%7B4%7De%5E%7B-4x%7D%20%2B%5Cfrac%7B1%7D%7B2%7D%20%5B%20-%5Cfrac%7Bx%7D%7B4%7De%5E%7B-4x%7D%20%20-%5Cfrac%7B1%7D%7B4%7De%5E%7B-4x%7D%5D)
Open bracket

Factor out 
![\int\limits {x^2\cdot e^{-4x}} \, dx = [-\frac{x^2}{4} -\frac{x}{8} -\frac{1}{8}]e^{-4x}](https://tex.z-dn.net/?f=%5Cint%5Climits%20%7Bx%5E2%5Ccdot%20e%5E%7B-4x%7D%7D%20%5C%2C%20dx%20%20%3D%20%5B-%5Cfrac%7Bx%5E2%7D%7B4%7D%20-%5Cfrac%7Bx%7D%7B8%7D%20-%5Cfrac%7B1%7D%7B8%7D%5De%5E%7B-4x%7D)
Rewrite as:
![\int\limits {x^2\cdot e^{-4x}} \, dx = [-\frac{1}{4}x^2 -\frac{1}{8}x -\frac{1}{8}]e^{-4x}](https://tex.z-dn.net/?f=%5Cint%5Climits%20%7Bx%5E2%5Ccdot%20e%5E%7B-4x%7D%7D%20%5C%2C%20dx%20%20%3D%20%5B-%5Cfrac%7B1%7D%7B4%7Dx%5E2%20-%5Cfrac%7B1%7D%7B8%7Dx%20-%5Cfrac%7B1%7D%7B8%7D%5De%5E%7B-4x%7D)
Recall that:
![\int\limits {x^2\cdot e^{-4x}} \, dx = -\frac{1}{64}e^{-4x}[Ax^2 + Bx + E]C](https://tex.z-dn.net/?f=%5Cint%5Climits%20%7Bx%5E2%5Ccdot%20e%5E%7B-4x%7D%7D%20%5C%2C%20dx%20%20%3D%20-%5Cfrac%7B1%7D%7B64%7De%5E%7B-4x%7D%5BAx%5E2%20%2B%20Bx%20%2B%20E%5DC)
![\int\limits {x^2\cdot e^{-4x}} \, dx = [-\frac{1}{64}Ax^2 -\frac{1}{64} Bx -\frac{1}{64} E]Ce^{-4x}](https://tex.z-dn.net/?f=%5Cint%5Climits%20%7Bx%5E2%5Ccdot%20e%5E%7B-4x%7D%7D%20%5C%2C%20dx%20%20%3D%20%5B-%5Cfrac%7B1%7D%7B64%7DAx%5E2%20-%5Cfrac%7B1%7D%7B64%7D%20Bx%20-%5Cfrac%7B1%7D%7B64%7D%20E%5DCe%5E%7B-4x%7D)
By comparison:



Solve A, B and C

Divide by 

Multiply by 64



Divide by 

Multiply by 64



Multiply by -64


So:


If you mean the sum of the two square roots, it would be 11. The square root of 25 = 5 and the square root of 36 = 6.. and 5 + 6 = 11
42×3=126
42×6=252
42×7=294
42×8=336
Nearest is Product of 7
So quotient should be 7
Answer:
197/ 50 or in decimal 3.94