The organism under study, which will be used to donate DNA for the analysis, is called the donor organism. The basic procedure is to extract and cut up DNA from a donor genome into fragments containing from one to several genes and allow these fragments to insert themselves individually into opened-up small autonomously replicating DNA molecules such as bacterial plasmids. These small circular molecules act as carriers, or vectors, for the DNA fragments. The vector molecules with their inserts are called recombinant DNA because they consist of novel combinations of DNA from the donor genome (which can be from any organism) with vector DNA from a completely different source (generally a bacterial plasmid or a virus). The recombinant DNA mixture is then used to transform bacterial cells, and it is common for single recombinant vector molecules to find their way into individual bacterial cells. Bacterial cells are plated and allowed to grow into colonies. An individual transformed cell with a single recombinant vector will divide into a colony with millions of cells, all carrying the same recombinant vector. Therefore an individual colony contains a very large population of identical DNA inserts, and this population is called a DNA clone. A great deal of the analysis of the cloned DNA fragment can be performed at the stage when it is in the bacterial host. Later, however, it is often desirable to reintroduce the cloned DNA back into cells of the original donor organism to carry out specific manipulations of genome structure and function.
Answer:
The specimens that are the best suited for their environment will survive and reproduce. This is to help ensure that the population will thrive and become better suited for their environment. It can affect the change by ensuring that the best possible breed of a given species will live, and the ones that aren't as suited for the environment will die out.
Srry for the long answer.
Explanation:
The fructose 1-phosphate pathway can deplete intracellular phosphate/ ATP.
Explanation:
Fructose 1-phosphate is a derivative of fructose. For understanding in better way fructose metabolism has three enzymes. Fructose- bisphosphate aldolase B, fructokinase and Adenosine triphosphate. These all are present in liver and kidney of human as well rat. In liver rapidly fructose is change to fructose 1 through fructokinase.
After it is converted into trioses dihydroxyacetone phosphate as well as glyceraldehyde through aldolase. With glucose metabolism Fructose get synergistic effect