Answer: The z-scores for a woman 6 feet tall is 2.96 and the z-scores for a a man 5'10" tall is 0.25.
Step-by-step explanation:
Let x and y area the random variable that represents the heights of women and men.
Given : The heights of women aged 20 to 29 are approximately Normal with mean 64 inches and standard deviation 2.7 inches.
i.e.

Since , 
Then, z-score corresponds to a woman 6 feet tall (i.e. x=72 inches).
[∵ 1 foot = 12 inches , 6 feet = 6(12)=72 inches]

Men the same age have mean height 69.3 inches with standard deviation 2.8 inches.
i.e.

Then, z-score corresponds to a man 5'10" tall (i.e. y =70 inches).
[∵ 1 foot = 12 inches , 5 feet 10 inches= 5(12)+10=70 inches]

∴ The z-scores for a woman 6 feet tall is 2.96 and the z-scores for a a man 5'10" tall is 0.25.
Answer:
Plot -11 on the tick mark directly to the left of -10.
Step-by-step explanation:
Hope this helps!
-Josh
Answers:
Vertical asymptote: x = 0
Horizontal asymptote: None
Slant asymptote: (1/3)x - 4
<u>Explanation:</u>
d(x) = 
= 
Discontinuities: (terms that cancel out from numerator and denominator):
Nothing cancels so there are NO discontinuities.
Vertical asymptote (denominator cannot equal zero):
3x ≠ 0
<u>÷3</u> <u>÷3 </u>
x ≠ 0
So asymptote is to be drawn at x = 0
Horizontal asymptote (evaluate degree of numerator and denominator):
degree of numerator (2) > degree of denominator (1)
so there is NO horizontal asymptote but slant (oblique) must be calculated.
Slant (Oblique) Asymptote (divide numerator by denominator):
- <u>(1/3)x - 4 </u>
- 3x) x² - 12x + 20
- <u>x² </u>
- -12x
- <u>-12x </u>
- 20 (stop! because there is no "x")
So, slant asymptote is to be drawn at (1/3)x - 4
You could have stayed in one place
I think
Answer:
$93
Step-by-step explanation:
12(3.75+4.00)
= 93