Answer:
The answer to your question is 2i
Step-by-step explanation:
![\sqrt[4]{-16}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B-16%7D)
- Get the prime factors of -16
- 16 2
- 8 2
- 4 2
- 2 2
1
16 = 2⁴
- Express the -16 as a power
![\sqrt[4]{-2^{4}} or \sqrt[4]{2^{4}i^{2}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B-2%5E%7B4%7D%7D%20%20or%20%20%20%5Csqrt%5B4%5D%7B2%5E%7B4%7Di%5E%7B2%7D%7D)
Remember that -1 = i²
- Get the fourth root of -16
2i
See in the explanation
<h2>
Explanation:</h2>
Hello! Recall that you need to write complete questions in order to get good and precise answers. However, I'll try to explain this problem in a general way. The definition of polynomial functions states:

Suppose we have the following polynomial function:

If
is a factor of this polynomial function, we can write
as:

In whose case:

Evaluating 

So in conclusion:
The graph is shown below and is consistent with our conclusion.
<h2>Learn more:</h2>
Complex zeros: brainly.com/question/13728954
#LearWithBrainly
Answer:
6x +47
Step-by-step explanation:
f(x) = 6x + 11
g(x) = x + 6
now f[g(x)]=<em>by</em><em> </em><em>substituting</em><em> </em><em>values</em><em> </em><em>of</em><em> </em><em>g</em><em> </em><em>(</em><em>x</em><em>)</em>
<em>to</em><em> </em><em>f</em><em> </em><em>(</em><em>x</em><em>)</em>
<em>f[g(x)]</em><em>=</em><em>6</em><em> </em><em>(</em><em>x</em><em>+</em><em>6</em><em>)</em><em>+</em><em>11</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>6x</em><em>+</em><em>36</em><em>+</em><em>11</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>6x</em><em> </em><em>+</em><em>47</em>
Answer:
A. There are 5 1/6 Three fourths
in 4 1/8
Step-by-step explanation:
What is the median of the set 1,5,8,10,11,12,14,17,19,21,22,23?
Ilia_Sergeevich [38]
The median of this set is 13.
Explanation: we have 12 numbers, so we take the number between number 6 and 7 which are 12 and 14, between 12 and 14 we got 13, so that’s the median.