Answer: ![y = 5.88(1.24)^x](https://tex.z-dn.net/?f=y%20%3D%205.88%281.24%29%5Ex)
Step-by-step explanation: We are given points (−3,5),(1,12),(5,72),(7,137).
We know the equation of an exponential modal is:
![y = a(b)^x](https://tex.z-dn.net/?f=y%20%3D%20a%28b%29%5Ex)
Let us take first point and plug in above exponential equation, we get
![5 = a(b)^{-3}](https://tex.z-dn.net/?f=5%20%3D%20a%28b%29%5E%7B-3%7D)
On applying negative exponents rule
, we get
![5 = \frac{a}{b^3}](https://tex.z-dn.net/?f=5%20%3D%20%5Cfrac%7Ba%7D%7Bb%5E3%7D)
On cross multiplying, we get
------------(1).
Now, plugging (1,12) in above exponential equation, we get
--------------(2).
Substituting
in second equation, we get
![12 = (5b^3)\times b](https://tex.z-dn.net/?f=12%20%3D%20%285b%5E3%29%5Ctimes%20b)
![12 = 5b^4](https://tex.z-dn.net/?f=12%20%3D%205b%5E4)
Dividing both sides by 5, we get
![\frac{12}{5} =\frac{5b^4}{5}](https://tex.z-dn.net/?f=%5Cfrac%7B12%7D%7B5%7D%20%3D%5Cfrac%7B5b%5E4%7D%7B5%7D)
![2.4=b^4](https://tex.z-dn.net/?f=2.4%3Db%5E4)
Taking 4th root on both sides, we get
![b =\sqrt[4]{2.4}](https://tex.z-dn.net/?f=b%20%3D%5Csqrt%5B4%5D%7B2.4%7D)
b= 1.24.
Plugging b = 1.24 in first equation, we get
![a = 5(1.24)^3](https://tex.z-dn.net/?f=a%20%3D%205%281.24%29%5E3)
a=5.88.
Plugging values of a and b in
, we get
![y = 5.88(1.24)^x](https://tex.z-dn.net/?f=y%20%3D%205.88%281.24%29%5Ex)