B is the answer there is a common denominator y’a welcome
Answer:
The average value of
over the interval
is
.
Step-by-step explanation:
Let suppose that function
is continuous and integrable in the given intervals, by integral definition of average we have that:
(1)
(2)
By Fundamental Theorems of Calculus we expand both expressions:
(1b)
(2b)
We obtain the average value of
over the interval
by algebraic handling:
![F(5) - F(3) +[F(3)-F(-2)] = 40 + (-30)](https://tex.z-dn.net/?f=F%285%29%20-%20F%283%29%20%2B%5BF%283%29-F%28-2%29%5D%20%3D%2040%20%2B%20%28-30%29)



The average value of
over the interval
is
.
Answer:
No, because it fails the vertical line test ⇒ B
Step-by-step explanation:
To check if the graph represents a function or not, use the vertical line test
<em>Vertical line test:</em> <em>Draw a vertical line to cuts the graph in different positions, </em>
- <em>if the line cuts the graph at just </em><em>one point in all positions</em><em>, then the graph </em><em>represents a function</em>
- <em>if the line cuts the graph at </em><em>more than one point</em><em> </em><em>in any position</em><em>, then the graph </em><em>does not represent a function </em>
In the given figure
→ Draw vertical line passes through points 2, 6, 7 to cuts the graph
∵ The vertical line at x = 2 cuts the graph at two points
∵ The vertical line at x = 6 cuts the graph at two points
∵ The vertical line at x = 7 cuts the graph at one point
→ That means the vertical line cuts the graph at more than 1 point
in some positions
∴ The graph does not represent a function because it fails the vertical
line test
Remember your prefixes! They help a lot, because there is a formula for this particular problem. Nonagon refers to a shape with 9 sides.
The number of triangles a polygon has is represented by the formula:
(n-2)
Where "n" is the number of sides. If you ever forget what you subtract "n" by think of a triangle. It has 3 sides, so it is only logical that you should only have 1 triangle (subtract by 2). So, what is the sum of the interior angles of a triangle, 180°. So the formula looks like this:
Sum of Interior Angles = 180°(n-2)
180°(9-2)
180°(7) = 1260° is the sum of interior angles for a nonagon!