1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
-BARSIC- [3]
3 years ago
13

What’s the answer to number 1 ? Show how you solved please !!!!

Mathematics
1 answer:
Elodia [21]3 years ago
5 0
Dan had 52
shown work: 29 x 2=58 58-6=52
You might be interested in
<img src="https://tex.z-dn.net/?f=%5Csqrt%7B0.81%7D" id="TexFormula1" title="\sqrt{0.81}" alt="\sqrt{0.81}" align="absmiddle" cl
Mandarinka [93]

Answer: .9

Step-by-step explanation:

3 0
3 years ago
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
Suppose that there are two types of tickets to a show: advance and same-day. Advance tickets cost and same-day tickets cost . Fo
AveGali [126]

Answer:

83746+4747+48484=3943848343

Step-by-step explanation:

Easy

8 0
2 years ago
Find the exact location of all the relative and absolute extrema of the function. HINT [See Examples 1 and 2.] (Order your answe
icang [17]

Answer:

  • (-1, -32) absolute minimum
  • (0, 0) relative maximum
  • (2, -32) absolute minimum
  • (+∞, +∞) absolute maximum (or "no absolute maximum")

Step-by-step explanation:

There will be extremes at the ends of the domain interval, and at turning points where the first derivative is zero.

The derivative is ...

  h'(t) = 24t^2 -48t = 24t(t -2)

This has zeros at t=0 and t=2, so that is where extremes will be located.

We can determine relative and absolute extrema by evaluating the function at the interval ends and at the turning points.

  h(-1) = 8(-1)²(-1-3) = -32

  h(0) = 8(0)(0-3) = 0

  h(2) = 8(2²)(2 -3) = -32

  h(∞) = 8(∞)³ = ∞

The absolute minimum is -32, found at t=-1 and at t=2. The absolute maximum is ∞, found at t→∞. The relative maximum is 0, found at t=0.

The extrema are ...

  • (-1, -32) absolute minimum
  • (0, 0) relative maximum
  • (2, -32) absolute minimum
  • (+∞, +∞) absolute maximum

_____

Normally, we would not list (∞, ∞) as being an absolute maximum, because it is not a specific value at a specific point. Rather, we might say there is no absolute maximum.

5 0
3 years ago
Which number line shows the solution set to this inequality? -2x + 9 &lt; x − 9
kotykmax [81]

Answer:

see below

Step-by-step explanation:

-2x + 9 < x − 9

Add 2x to each side

2x-2x + 9 < 2x+x − 9

9 < 3x-9

Add 9 to each side

9+9 < 3x

18 < 3x

Divide each side  by 3

18/3 < 3x/3

6 < x

Open circle  at 6 line going to the right

5 0
3 years ago
Other questions:
  • Jamie is a salesperson in a shoe store and earns $95 per week, plus 20% of her weekly sales. If Jamie makes $475 in one week, wh
    10·1 answer
  • HELPPPP. SOMEONE HELP PLEASE
    8·2 answers
  • ANSWER PLEASE !!<br> -2x-5=10<br> 4x+2y=8<br> -6x+2y=12
    6·1 answer
  • Use these numbers:
    7·2 answers
  • Last year, Mark was 46 inches tall. This year, Mark’s height is 3 inches less than Peter’s height. Peter is 51 inches tall. How
    10·1 answer
  • Can someone help me? I don’t have much time.
    12·1 answer
  • *<br> 20% of x is 130. What is x?
    14·1 answer
  • Make a number line and show all values of x. x≤2 and x&lt; -5
    7·2 answers
  • Seven more than twice a number is 23.
    15·2 answers
  • Question 10 of 15<br> What is the solution to the system of equations graphed below?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!