1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oksi-84 [34.3K]
3 years ago
7

What 2 numbers multiply to 30 and add to -11

Mathematics
1 answer:
MissTica3 years ago
4 0

Answer:

-5 and -6

Step-by-step explanation:

You might be interested in
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
3 years ago
Type the correct answer in each box. Use numerals instead of words. What is the y intercept of this quadratic function f(x)=-x*2
grandymaker [24]

Answer:

Y-intercept is (0, -22)

Step-by-step explanation:

4 0
4 years ago
Read 2 more answers
A grid shows the positions of a subway stop and your house. The subway stop is located at (7,-4) and your house is located at (-
Anna007 [38]
Image a right triangle with two points at these two locations and the hypothenuse as the distance between them.
Find the length straight down from the first point to the second: 10 units
Find the length to the right from the first point to the second: 10 units
Use the Pythagorean theorem: a^2 + b^2 = c^2
10^2 + 10^2 = 200
√200 = 10√2 = 14.14 units
8 0
3 years ago
Using quadratic formula to find the solution for<br><br><br> y=3x^3+8x-1
andre [41]
Y=-1

that’s the answer
3 0
3 years ago
Find the missing measure in a right triangle if a= 9 ft and b = 12 ft.
Lena [83]

Answer:

c = 15 ft

Step-by-step explanation:

a^2 + b^2 = c^2

9^2 + 12^2 = c^2

c^2 = 225

c = √225

<u>c = 15 ft</u>

5 0
3 years ago
Other questions:
  • Help me please please :^
    15·2 answers
  • What is the greatest common factor of the terms 14c to the second power D and 42 C to the third power d
    9·1 answer
  • 8 minus the quotient of 15 and Y equals a product of Y and 13
    7·1 answer
  • Find dy/dx for the function y+4x²
    5·1 answer
  • I need help with this question
    9·2 answers
  • what digit could be in the ten millions place of a number that is greater than 70,000,000 but less than 100,000,000
    7·1 answer
  • Is it hot or cold at the space​
    15·1 answer
  • How can unit analysis help you solve a conversion problem?
    5·1 answer
  • Two angles are supplementary angles.
    9·1 answer
  • Answer ASAP!
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!