The equation of the lines can be plotted on the graph after calculating the coordinates on each line.
<h3>What is a linear equation?</h3>
It is defined as the relation between two variables, if we plot the graph of the linear equation we will get a straight line.
If in the linear equation, one variable is present, then the equation is known as the linear equation in one variable.
We have two linear equation:
x = 4y
x + y = 7.0
To plot the linear equation first we will find the few coordinates to plot on the coordinate plane.
For the equation of line:
x = 4y
x 0 1 2 3 -1 -2 -3
y 0 4 8 12 -4 -8 -12
For the equation of line:
x + y = 7.0
x 0 1 2 3 -1 -2 -3
y 7 6 5 4 8 9 10
Thus, the equation of the lines can be plotted on the graph after calculating the coordinates on each line.
Learn more about the linear equation here:
brainly.com/question/11897796
#SPJ1
Answer:
$1.5
Step-by-step explanation:
$7- 5.50= 1.5
Answer:
yes, ±2
Step-by-step explanation:
The x-intercepts are found by setting y=0 and solving for x:
x^2/4 = 1
x^2 = 4
x = ±√4
x = ±2
The x-values of interest are -2 and +2.
たはたらさあらたはたはあらたさらやたはまさらたはまりあはらたはたさたはあらあらたはたひたはらたら、らま、らま、らまはたはたはさまらたらまはあはあらたはたひまひはたらたはまはたらまはた
Answer:
The highest total cholesterol level a man in this 35–44 age group can have and be in the lowest 10% is 160.59 milligrams per deciliter.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

Find the highest total cholesterol level a man in this 35–44 age group can have and be in the lowest 10%.
This is the 10th percentile, which is X when Z has a pvalue of 0.1. So X when Z = -1.28.




The highest total cholesterol level a man in this 35–44 age group can have and be in the lowest 10% is 160.59 milligrams per deciliter.