Answer:
B. The father did not contribute a sex chromosome to his daughter due to nondisjunction of the sex chromosomes. The daughter is XO and her only X chromosome came from her mother, who was a carrier.
A.The mother's X chromosomes failed to separate during meiosis, and the daughter inherited two X chromosomes with the Lesch-Nyhan mutation. The father contributed no sex chromosomes.
Explanation:
As seen in the question above, a little girl was diagnosed with Lesch-Nyhan syndrome, which is an X-linked recessive condition caused by a mutation in the HPRT1 gene responsible for purine metabolism.
The little girl's parents do not have the syndrome, and no one in the little girl's paternal family presented this syndrome, however, we know that the maternal grandfather of the little girl's mother had the syndrome, which means that it was the mother's genetic material that contributed to the development of the syndrome in the little girl. This was because the little girl did not receive any X chromosomes from her father, but she inherited the two X chromosomes from her mother that coded for the Lesch-Nyhan mutation. This happened because the mother's X chromosome disjuction did not occur during meiosis I.
As shown above, the father did not contribute any sex chromosomes to his daughter, which means that the daughter is XO and her only X chromosome came from her mother, who was a carrier.
Answer:
It enters fish through the gills and the female attaches to the tongue, with the male attaching on the gill arches beneath and behind the female. Females are 8–29 millimetres (0.3–1.1 in) long and 4–14 mm (0.16–0.55 in) wide.
Explanation:
Mark me as brainliest
Without efficient nutrient absorption, our body won’t function properly leaving us susceptible to deficiencies and disease.
Hope this helps
Ans.
The codons show genetic codes, made up of triplet of nucleotides in DNA or RNA that code for specific amino acids. The different codes can code for a same a amino acid. When a substitutional mutation occurs in genetic material, it shows substitution of one nucleotide pair for another and leads to formation of a different codon.
The first mutation that leads to CAU to CAC, it will not show any potential damage as both CAU and CAC codons code for histidine amino acid.
The second mutation that leads to UGU to UGC will also not show any damage to protein as both of these codons code for cysteine amino acid.
The third codon, that results UCU to UUU will cause a potential damage to protein as UUU codes for phenyl alanine (an aromatic, non-polar amino acid) and UCU codes for serine (a polar amino acid).
Thus, the correct answer is 'option C).' as in a protein, substitution of serine with phenylalanine will lead to change in structure and function of that protein.
Sponge ? i may be wrong though