Answer
(a) 
(b) 
Step-by-step explanation:
(a)
δ(t)
where δ(t) = unit impulse function
The Laplace transform of function f(t) is given as:

where a = ∞
=> 
where d(t) = δ(t)
=> 
Integrating, we have:
=> 
Inputting the boundary conditions t = a = ∞, t = 0:

(b) 
The Laplace transform of function f(t) is given as:



Integrating, we have:
![F(s) = [\frac{-e^{-(s + 1)t}} {s + 1} - \frac{4e^{-(s + 4)}}{s + 4} - \frac{(3(s + 1)t + 1)e^{-3(s + 1)t})}{9(s + 1)^2}] \left \{ {{a} \atop {0}} \right.](https://tex.z-dn.net/?f=F%28s%29%20%3D%20%5B%5Cfrac%7B-e%5E%7B-%28s%20%2B%201%29t%7D%7D%20%7Bs%20%2B%201%7D%20-%20%5Cfrac%7B4e%5E%7B-%28s%20%2B%204%29%7D%7D%7Bs%20%2B%204%7D%20-%20%5Cfrac%7B%283%28s%20%2B%201%29t%20%2B%201%29e%5E%7B-3%28s%20%2B%201%29t%7D%29%7D%7B9%28s%20%2B%201%29%5E2%7D%5D%20%5Cleft%20%5C%7B%20%7B%7Ba%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
Inputting the boundary condition, t = a = ∞, t = 0:

Answer:
1440
Step-by-step explanation:
It’s 1440
Answer:
x=12 ADB= 56 BDC= 54
Step-by-step explanation:
ADB and BDC are complementary, so they add up to 90 degrees. In other words ADB+BDC= 90 So I can input my knowns into the equation
(3x+10) + (4x-4) = 90
I combined like terms to give me 7x+6=90
Then I subtract 6 from both sides giving me 7x=84
Last I divide 7 on both sides. x=12
Then I input the x (12) into the equation and solve it from there
3(12)+10 and 4(12)-4
3(12)+10=56
4(12)-4=54
. . . I think. Hope this helps!
Answer:
-2
Step-by-step explanation:
First, let's put this in slope-intercept form:
-5y-3x=10
5y = -3x - 10
y = (-3/5)x - 2
The y-intercept is -2.