1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marusya05 [52]
3 years ago
8

            Find the approximate solution of this system of equations.

Mathematics
1 answer:
Montano1993 [528]3 years ago
4 0
Y = |x² - 3x + 1|
y = x - 1

|x² - 3x + 1| = x - 1
|x² - 3x + 1| = ±1(x - 1)
|x² - 3x + 1| = 1(x - 1)       or      |x² - 3x + 1| = -1(x - 1)
|x² - 3x + 1| = 1(x) - 1(1)    or    |x² - 3x + 1| = -1(x) + 1(1)
|x² - 3x + 1| = x - 1        or         |x² - 3x + 1| = -x + 1
  x² - 3x + 1 = x - 1         or          x² - 3x + 1 = -x + 1
        - x        - x                                + x         + x
  x² - 4x + 1 = -1           or            x² - 2x + 1 = 1
              + 1 + 1                                       - 1 - 1
  x² - 4x + 1 = 0              or           x² - 2x + 0 = 0
  x = -(-4) ± √((-4)² - 4(1)(1))    or    x = -(-2) ± √((-2)² - 4(1)(0))
                      2(1)                                             2(1)
  x = 4 ± √(16 - 4)            or            x = 2 ± √(4 - 0)
                 2                                                 2
  x = 4 ± √(12)              or               x = 2 ± √(4)
             2                                                  2
 x = 4 ± 2√(3)               or               x = 2 ± 2
             2                                                2
 x = 2 ± √(3)                or                x = 1 ± 1
 x = 2 + √(3)  or  x = 2 - √(3)   or    x = 1 + 1    or    x = 1 - 1
                                                      x = 2       or       x = 0
y = x - 1          or           y = x - 1                            or    y = x - 1   or    y = x - 1
y = (2 + √(3)) - 1    or    y = (2 - √(3)) - 1          or         y = 2 - 1    or    y = 0 - 1
y = 2 - 1 + √(3)     or      y = 2 - 1 - √(3)          or           y = 1      or       y = -1
y = 1 + √(3)        or        y = 1 - √(3)               (x, y) = (2, 1)    or    (x, y) = (0, -1)
       (x, y) = (2 ± √(3), 1 ± √(3))

The solution (0, -1) can be made by one function (y = x - 1) while the solution (2 ± √(3), 1 ± √(3)) can be made by another function (y = |x² - 3x + 1|). So the solution (2, 1) can be made by both functions, making the two solutions equal.
You might be interested in
A basket is filled with 8 white eggs and 10 brown eggs. Half of the white eggs are cracked. An egg is randomly selected from the
german
It would be 4/16, so the answer is 1/4.
4 0
3 years ago
Read 2 more answers
Free 25 points TwT..
DerKrebs [107]

Answer: hmmmmmmmm sol and hmmmmmmm lemme think and charger?

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Why y'all put 1\3 bdhchgf d gchg hello. helo0o elhwl
nydimaria [60]

Answer:

1/3=33.33%?

Step-by-step explanation:

the only math I see is 1/3 and a random 0 near O's

5 0
2 years ago
The 5th term in a geometric sequence is 160. The 7th term is 40. What are possible values of the 6th term of the sequence?
omeli [17]

Answer:

C. The 6th term is positive/negative 80

Step-by-step explanation:

Given

Geometric Progression

T_5 = 160

T_7 = 40

Required

T_6

To get the 6th term of the progression, first we need to solve for the first term and the common ratio of the progression;

To solve the common ratio;

Divide the 7th term by the 5th term; This gives

\frac{T_7}{T_5} = \frac{40}{160}

Divide the numerator and the denominator of the fraction by 40

\frac{T_7}{T_5} = \frac{1}{4} ----- equation 1

Recall that the formula of a GP is

T_n = a r^{n-1}

Where n is the nth term

So,

T_7 = a r^{6}

T_5 = a r^{4}

Substitute the above expression in equation 1

\frac{T_7}{T_5} = \frac{1}{4}  becomes

\frac{ar^6}{ar^4} = \frac{1}{4}

r^2 = \frac{1}{4}

Square root both sides

r = \sqrt{\frac{1}{4}}

r = ±\frac{1}{2}

Next, is to solve for the first term;

Using T_5 = a r^{4}

By substituting 160 for T5 and ±\frac{1}{2} for r;

We get

160 = a \frac{1}{2}^{4}

160 = a \frac{1}{16}

Multiply through by 16

16 * 160 = a \frac{1}{16} * 16

16 * 160 = a

2560 = a

Now, we can easily solve for the 6th term

Recall that the formula of a GP is

T_n = a r^{n-1}

Here, n = 6;

T_6 = a r^{6-1}

T_6 = a r^5

T_6 = 2560 r^5

r = ±\frac{1}{2}

So,

T_6 = 2560( \frac{1}{2}^5) or T_6 = 2560( \frac{-1}{2}^5)

T_6 = 2560( \frac{1}{32}) or T_6 = 2560( \frac{-1}{32})

T_6 = 80 or T_6 = -80

T_6 =±80

Hence, the 6th term is positive/negative 80

8 0
3 years ago
If Jane's shirt cost 20$, but she has a 15% off coupon, what is her cost before tax
alina1380 [7]

Answer:

17

Step-by-step explanation:

The discount on the shirt is 15%

Discount = price* discount rate

               = 20 * 15%

               = 20 * .15

                =3

The new price is the previous price minus the discount

new price = 20-3

new price = 17

8 0
3 years ago
Read 2 more answers
Other questions:
  • The area of a desk top is 8 ¾ square feet. If the length is 3 ½ft., find the width.
    11·1 answer
  • Which of the following options is a better purchase for a bicycle? Option 1: A cash sale for $88
    8·2 answers
  • Somebody help me!!! <br> What is the area of the rectangle in the coordinate plane?
    10·1 answer
  • URGENT <br>Perform the indicated operation and simplify the result.
    5·1 answer
  • Which expression is equivalent to (x+7)+3y
    13·1 answer
  • Julio has $2.75 in his pocket in nickels and dimes. The number of dimes is 10 less than twice the number of nickels. Find the nu
    14·1 answer
  • Write an equation that models the linear relationship in the graph?
    6·2 answers
  • 1. The coefficient in the term 7xy is (a) 7 (b) 3 (c) 1 (d) 2
    8·1 answer
  • How many outfits can be made from 7 shirts, 6 pairs of pants, 6 pairs of socks, and 4 hats?
    6·2 answers
  • Please help me thanks a lot
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!