b must be equal to -6 for infinitely many solutions for system of equations
and 
<u>Solution:
</u>
Need to calculate value of b so that given system of equations have an infinite number of solutions

Let us bring the equations in same form for sake of simplicity in comparison

Now we have two equations

Let us first see what is requirement for system of equations have an infinite number of solutions
If
and
are two equation
then the given system of equation has no infinitely many solutions.
In our case,

As for infinitely many solutions 

Hence b must be equal to -6 for infinitely many solutions for system of equations
and
The function you seek to minimize is
()=3‾√4(3)2+(13−4)2
f
(
x
)
=
3
4
(
x
3
)
2
+
(
13
−
x
4
)
2
Then
′()=3‾√18−13−8=(3‾√18+18)−138
f
′
(
x
)
=
3
x
18
−
13
−
x
8
=
(
3
18
+
1
8
)
x
−
13
8
Note that ″()>0
f
″
(
x
)
>
0
so that the critical point at ′()=0
f
′
(
x
)
=
0
will be a minimum. The critical point is at
=1179+43‾√≈7.345m
x
=
117
9
+
4
3
≈
7.345
m
So that the amount used for the square will be 13−
13
−
x
, or
13−=524+33‾√≈5.655m
Answer:
1
Step-by-step explanation:
- KN = 3
- IK = -2
- 3 + -2 = 3 - 2
- 3 - 2 = 1
I hope this helps!
If y is directly proportional to x then y:x.
When y = 30, x = 6 then 30/6 = 5:1. Therefor for every 1x there is 5y vice versa. When x = 12, then y = 5 * 12 = 60.
Therefore y = 60 hence 60:12
Answer:
13
Step-by-step explanation:
104×7=728
728÷56=13