Answer:
i cant really see take a closer picture plz
Step-by-step explanation:
To find this, first find the factor or rate of which the numbers are moving. To do so do as follows.
subtract 1 from 3
3-1=2
So each number is having 2 added to it.
Now add two to 7 and the numbers afterwards till you get the 12th term
7+2=9
1+3+5+7+9
9+2=11
1+3+5+7+9+11
11+2=13
1+3+5+7+9+11+13
13+2=15
1+3+5+7+9+11+13+15
15+2=17
1+3+5+7+9+11+13+15+17
17+2=19
1+3+5+7+9+11+13+15+17+19
19+2=21
1+3+5+7+9+11+13+15+17+19+21
21+2=23
1+3+5+7+9+11+13+15+17+19+21+23
So 23 is the 12th term
It is not a circle but you can find the equation of the ellipse.
To do this we need to work out the major and minor radii and the centre
The centre is at (9, 7)
The major (y) radius is 1 and the minor (x) radius is 5
Therefore the equation is (x-9)/5 + (y-7)/1 = 1
Answer:
The nth term of the geometric sequence 7, 14, 28, ... is:

Step-by-step explanation:
Given the geometric sequence
7, 14, 28, ...
We know that a geometric sequence has a constant ratio 'r' and is defined by

where a₁ is the first term and r is the common ratio
Computing the ratios of all the adjacent terms

The ratio of all the adjacent terms is the same and equal to

now substituting r = 2 and a₁ = 7 in the nth term


Therefore, the nth term of the geometric sequence 7, 14, 28, ... is:
