The given expression is:

So, there are two terms in the expression
1)

2) -5
The constant term is -5.
The co-efficient of

is 4.
Answer:
A line segment is <u><em>always</em></u> similar to another line segment, because we can <u><em>always</em></u> map one into the other using only dilation a and rigid transformations
Step-by-step explanation:
we know that
A<u><em> dilation</em></u> is a Non-Rigid Transformations that change the structure of our original object. For example, it can make our object bigger or smaller using scaling.
The dilation produce similar figures
In this case, it would be lengthening or shortening a line. We can dilate any line to get it to any desired length we want.
A <u><em>rigid transformation</em></u>, is a transformation that preserves distance and angles, it does not change the size or shape of the figure. Reflections, translations, rotations, and combinations of these three transformations are rigid transformations.
so
If we have two line segments XY and WZ, then it is possible to use dilation and rigid transformations to map line segment XY to line segment WZ.
The first segment XY would map to the second segment WZ
therefore
A line segment is <u><em>always</em></u> similar to another line segment, because we can <u><em>always</em></u> map one into the other using only dilation a and rigid transformations
In the given graph point B is a relative maximum with the coordinates (0, 2).
The given function is
.
In the given graph, we need to find which point is a relative maximum.
<h3>What are relative maxima?</h3>
The function's graph makes it simple to spot relative maxima. It is the pivotal point in the function's graph. Relative maxima are locations where the function's graph shifts from increasing to decreasing. A point called Relative Maximum is higher than the points to its left and to its right.
In the graph, the maximum point is (0, 2).
Therefore, in the given graph point B is a relative maximum with the coordinates (0, 2).
To learn more about the relative maximum visit:
brainly.com/question/2321623.
#SPJ1
Given that the par value of the bond is $1000 and the quoted price is $102.1, then the price of the bond will be:
Price=(quoted price)
Price=102.1
Price=$102.1
Answer: $102.1