1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nataly [62]
3 years ago
7

Find the equation of the circle with center at (-1,-4) and radius of 2​

Mathematics
1 answer:
zavuch27 [327]3 years ago
7 0

\bf \textit{equation of a circle}\\\\ (x- h)^2+(y- k)^2= r^2 \qquad center~~(\stackrel{-1}{ h},\stackrel{-4}{ k})\qquad \qquad radius=\stackrel{2}{ r} \\\\[-0.35em] ~\dotfill\\[2em] [x-(-1)]^2+[y-(-4)]^2=2^2\implies (x+1)^2+(y+4)^2=4

You might be interested in
A store is having a sale on office
Natalka [10]

Answer:

c. $10.56

Step-by-step explanation:

$3.30 x 4 = $13.20 x 0.20 (20%) = $2.64

$13.20 - $2.64 = $10.56

4 0
3 years ago
A ladder 25 feet long is leaning against the wall of a house. The base of the ladder is pulled away from the wall at a rate of 2
Alika [10]

As the ladder is pulled away from the wall, the area and the height with the

wall are decreasing while the angle formed with the wall increases.

The correct response are;

  • (a) The velocity of the top of the ladder = <u>1.5 m/s downwards</u>

<u />

  • (b) The rate the area formed by the ladder is changing is approximately <u>-75.29 ft.²/sec</u>

<u />

  • (c) The rate at which the angle formed with the wall is changing is approximately <u>0.286 rad/sec</u>.

Reasons:

The given parameter are;

Length of the ladder, <em>l</em> = 25 feet

Rate at which the base of the ladder is pulled, \displaystyle \frac{dx}{dt} = 2 feet per second

(a) Let <em>y</em> represent the height of the ladder on the wall, by chain rule of differentiation, we have;

\displaystyle \frac{dy}{dt} = \mathbf{\frac{dy}{dx} \times \frac{dx}{dt}}

25² = x² + y²

y = √(25² - x²)

\displaystyle \frac{dy}{dx} = \frac{d}{dx} \sqrt{25^2 - x^2} = \frac{x \cdot \sqrt{625-x^2}  }{x^2- 625}

Which gives;

\displaystyle \frac{dy}{dt} = \frac{x \cdot \sqrt{625-x^2}  }{x^2- 625}\times \frac{dx}{dt} =  \frac{x \cdot \sqrt{625-x^2}  }{x^2- 625}\times2

\displaystyle \frac{dy}{dt} =  \mathbf{ \frac{x \cdot \sqrt{625-x^2}  }{x^2- 625}\times2}

When x = 15, we get;

\displaystyle \frac{dy}{dt} =   \frac{15 \times \sqrt{625-15^2}  }{15^2- 625}\times2 = \mathbf{-1.5}

The velocity of the top of the ladder = <u>1.5 m/s downwards</u>

When x = 20, we get;

\displaystyle \frac{dy}{dt} =   \frac{20 \times \sqrt{625-20^2}  }{20^2- 625}\times2 = -\frac{8}{3} = -2.\overline 6

The velocity of the top of the ladder = \underline{-2.\overline{6} \ m/s \ downwards}

When x = 24, we get;

\displaystyle \frac{dy}{dt} =   \frac{24 \times \sqrt{625-24^2}  }{24^2- 625}\times2 = \mathbf{-\frac{48}{7}}  \approx -6.86

The velocity of the top of the ladder ≈ <u>-6.86 m/s downwards</u>

(b) \displaystyle The \ area\ of \ the \ triangle, \ A =\mathbf{\frac{1}{2} \cdot x \cdot y}

Therefore;

\displaystyle The \ area\ A =\frac{1}{2} \cdot x \cdot \sqrt{25^2 - x^2}

\displaystyle \frac{dA}{dx} = \frac{d}{dx} \left (\frac{1}{2} \cdot x \cdot \sqrt{25^2 - x^2}\right) = \mathbf{\frac{(2 \cdot x^2- 625)\cdot \sqrt{625-x^2} }{2\cdot x^2 - 1250}}

\displaystyle \frac{dA}{dt} = \mathbf{ \frac{dA}{dx} \times \frac{dx}{dt}}

Therefore;

\displaystyle \frac{dA}{dt} =  \frac{(2 \cdot x^2- 625)\cdot \sqrt{625-x^2} }{2\cdot x^2 - 1250} \times 2

When the ladder is 24 feet from the wall, we have;

x = 24

\displaystyle \frac{dA}{dt} =  \frac{(2 \times 24^2- 625)\cdot \sqrt{625-24^2} }{2\times 24^2 - 1250} \times 2 \approx \mathbf{ -75.29}

The rate the area formed by the ladder is changing, \displaystyle \frac{dA}{dt} ≈ <u>-75.29 ft.²/sec</u>

(c) From trigonometric ratios, we have;

\displaystyle sin(\theta) = \frac{x}{25}

\displaystyle \theta = \mathbf{arcsin \left(\frac{x}{25} \right)}

\displaystyle \frac{d \theta}{dt}  = \frac{d \theta}{dx} \times \frac{dx}{dt}

\displaystyle\frac{d \theta}{dx}  = \frac{d}{dx} \left(arcsin \left(\frac{x}{25} \right) \right) = \mathbf{ -\frac{\sqrt{625-x^2} }{x^2 - 625}}

Which gives;

\displaystyle \frac{d \theta}{dt}  =  -\frac{\sqrt{625-x^2} }{x^2 - 625}\times \frac{dx}{dt}= \mathbf{ -\frac{\sqrt{625-x^2} }{x^2 - 625} \times 2}

When x = 24 feet, we have;

\displaystyle \frac{d \theta}{dt} =  -\frac{\sqrt{625-24^2} }{24^2 - 625} \times 2 \approx \mathbf{ 0.286}

Rate at which the angle between the ladder and the wall of the house is changing when the base of the ladder is 24 feet from the wall is \displaystyle \frac{d \theta}{dt} ≈ <u>0.286 rad/sec</u>

Learn more about the chain rule of differentiation here:

brainly.com/question/20433457

3 0
3 years ago
What is 4(x+6) I'm really confused and I need to get it answered
Sphinxa [80]
4x+24 is your answer
8 0
3 years ago
Read 2 more answers
Factor the expression. 9x2 + 24x + 16
Ilia_Sergeevich [38]
(3x)^2 + 2(3x)(4) + 4^{2}
(3x + 4)^2
5 0
4 years ago
Find the value of x in the figure below.<br><br><br><br> Please help me, Thank you!!
kirill115 [55]
I can answer this, but it is all based on assuming that both parts of that line are equal, so if you know otherwise then please don't use this answer.
3x + 5 = 5x - 7
- 3x
5 = 2x - 7
+ 7
12 = 2x
÷ 2
6 = x
So you get x as 6, I hope this helps!
5 0
3 years ago
Other questions:
  • Suppose A and B represent two different school populations where A &gt; B and A and B must be greater than 0. Which of the follo
    12·1 answer
  • Which of the following represents the zeros of f(x)= 6x^3 + 25x^2 -24×+5
    12·1 answer
  • Help please as soon as possible
    6·1 answer
  • Which problem can be solved using this inequality?<br> x + 5 ≤ 20
    9·2 answers
  • PLZ HELP ME!!!!!!
    12·2 answers
  • 120 problems in 5 hours
    8·2 answers
  • Solving system of equations by substitution <br> 3x+y=2<br> 2x-v=3
    13·1 answer
  • A DVD player that normally cost $160 is on sale for 70% of its normal price.What is the sale price of the DVD player.
    10·1 answer
  • Can anyone explain this to me?
    14·1 answer
  • Solve the system of function by graphing. Then classify the system.
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!