1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nookie1986 [14]
3 years ago
5

There are 10 less trumpet players than saxophone players. The number of saxophone playere is 3 times thr number of trumpet playe

rs. How many trumpet players are there
Mathematics
1 answer:
just olya [345]3 years ago
7 0
I'm guessing it 30 it says 3 times the nber of trumpet players
You might be interested in
Solving systems of equations using substitution
scoray [572]
You are told that y=-5, so just use that value for y in the second equation...

5x+4(-5)=-20

5x-20=-20

5x=0

x=0 so the solution, when the lines intersect, is the point (0,-5)
8 0
3 years ago
It takes one pipe 10 minutes to fill a tank with water. It takes a second
tiny-mole [99]
6 minutes maybe. I am not sure sorry
4 0
3 years ago
Pauline uses her home computer for word processing under contract to an agency. she is paid $7 per page for the first 50 pages,
MrMuchimi

a) 67=50+17

50×7+17×9=350+153=503$

b) 123=50+50+23

50×7+50×9+23×10=350+450+230=1030$

5 0
3 years ago
Find the solution of the differential equation f' (t) = t^4+91-3/t
Lynna [10]

Answer:

\displaystyle f(t) = \frac{t^5}{5} + 91t - 3ln|t| - \frac{1819}{20}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Algebra I</u>

  • Functions
  • Function Notation

<u>Calculus</u>

Derivatives

Derivative Notation

Antiderivatives - Integrals

Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle f'(t) = t^4 + 91 - \frac{3}{t}

\displaystyle f(1) = \frac{1}{4}

<u>Step 2: Integration</u>

<em>Integrate the derivative to find function.</em>

  1. [Derivative] Integrate:                                                                                   \displaystyle \int {f'(t)} \, dt = \int {t^4 + 91 - \frac{3}{t}} \, dt
  2. Simplify:                                                                                                         \displaystyle f(t) = \int {t^4 + 91 - \frac{3}{t}} \, dt
  3. Rewrite [Integration Property - Addition/Subtraction]:                               \displaystyle f(t) = \int {t^4} \, dt + \int {91} \, dt - \int {\frac{3}{t}} \, dt
  4. [1st Integral] Integrate [Integral Rule - Reverse Power Rule]:                     \displaystyle f(t) = \frac{t^5}{5} + \int {91} \, dt - \int {\frac{3}{t}} \, dt
  5. [2nd Integral] Integrate [Integral Rule - Reverse Power Rule]:                   \displaystyle f(t) = \frac{t^5}{5} + 91t - \int {\frac{3}{t}} \, dt
  6. [3rd Integral] Rewrite [Integral Property - Multiplied Constant]:                 \displaystyle f(t) = \frac{t^5}{5} + 91t - 3\int {\frac{1}{t}} \, dt
  7. [3rd Integral] Integrate:                                                                                 \displaystyle f(t) = \frac{t^5}{5} + 91t - 3ln|t| + C

Our general solution is  \displaystyle f(t) = \frac{t^5}{5} + 91t - 3ln|t| + C.

<u>Step 3: Find Particular Solution</u>

<em>Find Integration Constant C for function using given condition.</em>

  1. Substitute in condition [Function]:                                                               \displaystyle f(1) = \frac{1^5}{5} + 91(1) - 3ln|1| + C
  2. Substitute in function value:                                                                         \displaystyle \frac{1}{4} = \frac{1^5}{5} + 91(1) - 3ln|1| + C
  3. Evaluate exponents:                                                                                     \displaystyle \frac{1}{4} = \frac{1}{5} + 91(1) - 3ln|1| + C
  4. Evaluate natural log:                                                                                     \displaystyle \frac{1}{4} = \frac{1}{5} + 91(1) - 3(0) + C
  5. Multiply:                                                                                                         \displaystyle \frac{1}{4} = \frac{1}{5} + 91 - 0 + C
  6. Add:                                                                                                               \displaystyle \frac{1}{4} = \frac{456}{5} - 0 + C
  7. Simplify:                                                                                                         \displaystyle \frac{1}{4} = \frac{456}{5} + C
  8. [Subtraction Property of Equality] Isolate <em>C</em>:                                               \displaystyle -\frac{1819}{20} = C
  9. Rewrite:                                                                                                         \displaystyle C = -\frac{1819}{20}
  10. Substitute in <em>C</em> [Function]:                                                                             \displaystyle f(t) = \frac{t^5}{5} + 91t - 3ln|t| - \frac{1819}{20}

∴ Our particular solution to the differential equation is  \displaystyle f(t) = \frac{t^5}{5} + 91t - 3ln|t| - \frac{1819}{20}.

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Integration

Book: College Calculus 10e

7 0
3 years ago
Under his cell phone plan, Daniel pays a flat cost of $44.50 per month and $4 per gigabyte. He wants to keep his bill at $58.50
stellarik [79]

Answer:

B

Step-by-step explanation

4 0
3 years ago
Other questions:
  • George has $15. He would like to know if he has enough money to see a movie ($9.00) and buy a pretzel ($2.65), a drink ($1.35),
    13·2 answers
  • Find the least number which must be added to 1272 to make it a perfect
    15·1 answer
  • Aleesa’s dog bull has been put on a diet by his veterinarian. He weight 149 pounds after 8 weeks on his diet. By week 13, he wei
    5·1 answer
  • The product of three consecutive numbers is 990. What is the sum you f the 3 whole numbers?
    7·1 answer
  • Suzie went to a candy shop. The candy shop has a sign that shows the cost of the candies at the shop. The sign is below:
    10·1 answer
  • Help me please asap subtract with renaming
    8·1 answer
  • These are my last 2 questions<br> can someone please help me with them
    12·2 answers
  • Would this when solved be a proportional relationship? Answers needed!!!!
    9·2 answers
  • Will give brinley crown thing! show your work and explain...<br> - 109 + 9x = 86 - 4x
    6·2 answers
  • What is the sum of (3x - 6) and (5x + 8)?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!