Answer:
![(\sqrt{3} + \frac{1}{\sqrt[4]{6}})^{15}](https://tex.z-dn.net/?f=%28%5Csqrt%7B3%7D%20%2B%20%5Cfrac%7B1%7D%7B%5Csqrt%5B4%5D%7B6%7D%7D%29%5E%7B15%7D)
Binomial expansion formula,

Where,

![\implies (\sqrt{3} + \frac{1}{2})^{15}=\sum_{r=0}^{15} ^{15}C_r (\sqrt{3})^{15-r} (\frac{1}{\sqrt[4]{6}})^r](https://tex.z-dn.net/?f=%5Cimplies%20%28%5Csqrt%7B3%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%29%5E%7B15%7D%3D%5Csum_%7Br%3D0%7D%5E%7B15%7D%20%5E%7B15%7DC_r%20%28%5Csqrt%7B3%7D%29%5E%7B15-r%7D%20%28%5Cfrac%7B1%7D%7B%5Csqrt%5B4%5D%7B6%7D%7D%29%5Er)
![=(\sqrt{3})^{15}+15(\sqrt{3})^{14}(\frac{1}{\sqrt[4]{6}})^1+105(\sqrt{3})^{13}(\frac{1}{\sqrt[4]{6}})^2+455(\sqrt{3})^{12}(\frac{1}{\sqrt[4]{6}})^3+1365(\sqrt{3})^{11}(\frac{1}{\sqrt[4]{6}})^4+3003(\sqrt{3})^{10}(\frac{1}{\sqrt[4]{6}})^5+5005(\sqrt{3})^{9}(\frac{1}{\sqrt[4]{6}})^6+6435(\sqrt{3})^{8}(\frac{1}{\sqrt[4]{6}})^7+6435(\sqrt{3})^{7}(\frac{1}{\sqrt[4]{6}})^8+5005(\sqrt{3})^{6}(\frac{1}{\sqrt[4]{6}})^9+3003(\sqrt{3})^{5}(\frac{1}{\sqrt[4]{6}})^{10}+1365(\sqrt{3})^{4}(\frac{1}{\sqrt[4]{6}})^{11}+455(\sqrt{3})^{3}(\frac{1}{\sqrt[4]{6}})^{12}+105(\sqrt{3})^{2}(\frac{1}{\sqrt[4]{6}})^{13}+15(\sqrt{3})^{1}(\frac{1}{\sqrt[4]{6}})^{14}+(\frac{1}{\sqrt[4]{6}})^{15}](https://tex.z-dn.net/?f=%3D%28%5Csqrt%7B3%7D%29%5E%7B15%7D%2B15%28%5Csqrt%7B3%7D%29%5E%7B14%7D%28%5Cfrac%7B1%7D%7B%5Csqrt%5B4%5D%7B6%7D%7D%29%5E1%2B105%28%5Csqrt%7B3%7D%29%5E%7B13%7D%28%5Cfrac%7B1%7D%7B%5Csqrt%5B4%5D%7B6%7D%7D%29%5E2%2B455%28%5Csqrt%7B3%7D%29%5E%7B12%7D%28%5Cfrac%7B1%7D%7B%5Csqrt%5B4%5D%7B6%7D%7D%29%5E3%2B1365%28%5Csqrt%7B3%7D%29%5E%7B11%7D%28%5Cfrac%7B1%7D%7B%5Csqrt%5B4%5D%7B6%7D%7D%29%5E4%2B3003%28%5Csqrt%7B3%7D%29%5E%7B10%7D%28%5Cfrac%7B1%7D%7B%5Csqrt%5B4%5D%7B6%7D%7D%29%5E5%2B5005%28%5Csqrt%7B3%7D%29%5E%7B9%7D%28%5Cfrac%7B1%7D%7B%5Csqrt%5B4%5D%7B6%7D%7D%29%5E6%2B6435%28%5Csqrt%7B3%7D%29%5E%7B8%7D%28%5Cfrac%7B1%7D%7B%5Csqrt%5B4%5D%7B6%7D%7D%29%5E7%2B6435%28%5Csqrt%7B3%7D%29%5E%7B7%7D%28%5Cfrac%7B1%7D%7B%5Csqrt%5B4%5D%7B6%7D%7D%29%5E8%2B5005%28%5Csqrt%7B3%7D%29%5E%7B6%7D%28%5Cfrac%7B1%7D%7B%5Csqrt%5B4%5D%7B6%7D%7D%29%5E9%2B3003%28%5Csqrt%7B3%7D%29%5E%7B5%7D%28%5Cfrac%7B1%7D%7B%5Csqrt%5B4%5D%7B6%7D%7D%29%5E%7B10%7D%2B1365%28%5Csqrt%7B3%7D%29%5E%7B4%7D%28%5Cfrac%7B1%7D%7B%5Csqrt%5B4%5D%7B6%7D%7D%29%5E%7B11%7D%2B455%28%5Csqrt%7B3%7D%29%5E%7B3%7D%28%5Cfrac%7B1%7D%7B%5Csqrt%5B4%5D%7B6%7D%7D%29%5E%7B12%7D%2B105%28%5Csqrt%7B3%7D%29%5E%7B2%7D%28%5Cfrac%7B1%7D%7B%5Csqrt%5B4%5D%7B6%7D%7D%29%5E%7B13%7D%2B15%28%5Csqrt%7B3%7D%29%5E%7B1%7D%28%5Cfrac%7B1%7D%7B%5Csqrt%5B4%5D%7B6%7D%7D%29%5E%7B14%7D%2B%28%5Cfrac%7B1%7D%7B%5Csqrt%5B4%5D%7B6%7D%7D%29%5E%7B15%7D)
∵ both
and
are irrational numbers,
And, if the power of √3 is even, it converted to a rational number,
If its power is odd it remained as irrational number,
But, the product of a rational number and irrational number is irrational,
Thus, all terms in the above expansion are irrational. ( which can not expressed in the form of p/q, where, p and q are integers s.t. q ≠ 0 )