Answer:
The correct answer is A
Step-by-step explanation:
because he coordinates all intersect plan CDI
ABC, FGH, BCG, ADI
The top plane ABC
The bottom plane FGH
The back plane BCG
The front plane ADI
{(3x)}^{2}-2(3x)(5)+{5}^{2}
−2(3x)(5)+5
2
{(3x-5)}^{2}
It's pretty much simple. Since we can factor a polynomial by its zeros, lets write one of degree nine :
X(X-1)(X-2)(X-3)(X-4)(X-5)(X+1)(X+2)(X+3)= X^9-9X^8+6X^7+126X^6-231X^5-441X^4+944X^3+324X^2-720X
This polynomial is of degree 9 and has exactly 5 strictly positive zeros : 1, 2, 3, 4, 5
And it has 3 negative zeros : - 1, -1, - 3
And it has 0 as a zero too.
There is also this one :
(X-1)(X-2)(X-3)(X-4)(X²+1)(X+1)(X+2)(X+3) = X^9-4X^8-13X^7+52X^6+35X^5-140X^4+13X^3-52X^2-36X+144
It has 4 positive zeros : 1, 2, 3, 4.
It has complex zeros : i and - i
3 negative zeros : - 1, - 2 , - 3
Good Luck
$360
12 months in a year
12 x 30 = 360