The trial and error method is used to find an initial factor:
If we let f(x) = x³ - x² - 24x - 36 and all we have to do is sub' in values of x until
f(x) = 0, we can use this to find an initial factor by the factor theorem:
f(1) = (1)³ - (1)² - 24(1) - 36 = -60
f(2) = (2)³ - (2)² - 24(2) - 36 = -80
f(5) = (5)³ - (5)² - 24(5) - 36 = -56
*** f(6) = (6)³ - (6)² - 24(6) - 36 = 0 ***
f(6) = 0 so (x - 6) is a factor of f(x).
This means that: f(x) = x³ - x² - 24x - 36 = (x - 6)(ax² + bx + c).
To find a,b and c, use long division (or inspection) to divide x³ - x² - 24x - 36 by x - 6.
The other 2 factors of f(x) can then be found by factorizing the
ax² + bx + c quadratic the way you would with any other quadratic (i.e. by quadratic formula, CTS or inspection).
Answer:
The correct option is O B'
Step-by-step explanation:
We have a quadrilateral with vertices A, B, C and D. A line of reflection is drawn so that A is 6 units away from the line, B is 4 units away from the line, C is 7 units away from the line and D is 9 units away from the line.
Now we perform the reflection and we obtain a new quadrilateral A'B'C'D'.
In order to apply the reflection to the original quadrilateral ABCD, we perform the reflection to all of its points, particularly to its vertices.
Wherever we have a point X and a line of reflection L and we perform the reflection, the new point X' will keep its original distance from the line of reflection (this is an important concept in order to understand the exercise).
I will attach a drawing with an example.
Finally, we only have to look at the vertices and its original distances to answer the question.
The vertice that is closest to the line of reflection is B (the distance is 4 units). We answer O B'
Answer: 2a - 10
Step-by-step explanation:
a represents the number of students in the art club.
The number of students in a school's math club is ten less than twice the number of students in the art club.
ten less = - 10
twice the number of students in the art club = 2*a
2a - 10 = the number of students in the math club
Answer:
Where are the box plots?? I need it to answer the question.
Answer:
(1,3)
Step-by-step explanation: