Answer:
What do you need help with
Step-by-step explanation: :)
Answer:
Step-by-step explanation:
Discount = % discount × cost price given.
Discounted price = cost price - discount
% discount = 30%
cost price given = $16
Discount = % discount × cost price given.
= (30/100) × $16
= $4.8
Giveaway price = $16 - $4.8
= $11.2
Answer:
Check the solution below
Step-by-step explanation:
2) Given the equation
x +y =5... 1 and
x-y =3 ... 2
Add both equations
x+x = 5+3
2x = 8
x = 8/2
x = 4
Substitute x = 4 into 1:
From 1: x+y = 5
4+y= 5
y = 5-4
y = 1
3) Given
x+3y =15 ... 1
2x+7y=19 .... 2
From 2: x = 15-3y
Substitute into 2
2(15-3y)+7y = 19
30-6y+7y = 19
30+y = 19
y = 19-30
y = -11
Substitute y=-11 into x = 15-3y
x =15-3(-11)
x = 15+33
x = 48
The solution set is (48, -11)
4) given
x/2 +y/3 =0 and x+2y=1
From 1
(3x+2y)/6 = 0
3x+2y = 0.. 3
x+2y= 1... 4
From 4: x = 1-2y
Substutute
3(1-2y) +2y = 0
3-6y+2y = 0
3 -4y = 0
4y = 3
y = 3/4
Since x = 1-2y
x = 1-2(3/4)
x = 1-3/2
x= -1/2
The solution set is (-1/2, 3/4)
5) Given
5.x=1/2 and y =x +1 then solution is
We already know the vkue of x
Get y
y= x+1
y = 1/2 + 1
y = 3/2
Hence the solution set is (1/2, 3/2)
6) Given
3x +y =5 and x -3y =5
From 3; x = 5+3y
Substitute into 1;
3(5+3y)+y = 5
15+9y+y = 5
10y = 5-15
10y =-10
y = -1
Get x;
x = 5+3y
x = 5+3(-1)
x = 5-3
x = 2
Hence two solution set is (2,-1)
Answer:
300.29
Step-by-step explanation:
Answer:
The correct option is;
C. Quadratic
Step-by-step explanation:
The given information are;
The quantity of corn Farmer Joe has to sell = 1,000 bushels
The present market price for corn = $5.00 a bushel
The amount by which he expects the market price to rise per week =$0.15
The number of bushels lost to spoilage per week = 10
Therefore, we have;
The value of the corn = Amount of corn left × Price of corn
The price of the corn per bushel with time = 5 + 0.15×t
The amount of corn left = 1000 - 10×t
Where;
t = Time in minutes
Therefore, the total value of corn = (1000 - 10×t)×(5 + 0.15×t) = -1.5·t²+100·t+5000 which is a quadratic model.
Therefore, the correct option is a quadratic model.