Answer:7
Step-by-step explanation:
Using proportions, it is found that the first graph, which is increasing, could represent the relationship.
The more hours the factory is open, the more containers are produced, hence, the relationship is direct proportional.
- Direct proportional are represented by increasing graphs, that is, the higher the value of x, the higher the value of y.
In this problem, the first graph(top) is increasing while the second(bottom) is decreasing, hence, the first graph could represent the relationship.
To learn more about proportions, you can take a look at brainly.com/question/24372153
Answer:
median 6.5
mean 6.166
range 6
Step-by-step explanation:
5x-6 because 6 less than means after and a number times 5 would be 5x so it would be 5x-6
Step-by-step explanation:
LHS:
\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\ldots \ldots \ldots \ldots \ldots+\frac{1}{\sqrt{8}+\sqrt{9}}1+21+2+31+3+41+……………+8+91
Rationalizing the denominator, we get
\Rightarrow\left(\frac{1}{1+\sqrt{2}} \times \frac{1-\sqrt{2}}{1-\sqrt{2}}\right)+\left(\frac{1}{\sqrt{2}+\sqrt{3}} \times \frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}}\right)+\left(\frac{1}{\sqrt{3}+\sqrt{4}} \times \frac{\sqrt{3}-\sqrt{4}}{\sqrt{3}-\sqrt{4}}\right)+\cdots \ldots+\left(\frac{1}{\sqrt{8}+\sqrt{9}} \times \frac{\sqrt{8}-\sqrt{9}}{\sqrt{8}-\sqrt{9}}\right)⇒(1+21×1−21−2)+(2+31×2−32−3)+(3+41×3−43−4)+⋯…+(8+91×8−98−9)
We know that,
\left(a^{2}-b^{2}\right)=(a+b)(a-b)(a2−b2)=(a+b)(a−b)
Now, on substituting the formula, we get,
=\frac{1-\sqrt{2}}{1-2}+\frac{\sqrt{2}-\sqrt{3}}{2-3}+\frac{\sqrt{3}-\sqrt{4}}{3-4}+\cdots \ldots \cdot \frac{(\sqrt{8}-\sqrt{9})}{8-9}=1−21−2+2−32−3+3−43−4+⋯…⋅8−9(8−9)
\Rightarrow \frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\cdots+\frac{1}{\sqrt{8}+\sqrt{9}}=(\sqrt{2}-1)+(\sqrt{3}-\sqrt{2})+(\sqrt{4}-\sqrt{3})+\cdots+(\sqrt{9}-\sqrt{8})⇒1+21+