Here, I'll help you a little
rewrite the equation as -6k/5 = 12
multiply both sides by 5
-6k=60
divide both sides by -6 to isolate k
k = -10
Hope this helps :)
Check the picture below.
so the area of the hexagon is really just the area of two isosceles trapezoids.
![\textit{area of a trapezoid}\\\\ A=\cfrac{h(a+b)}{2}~~ \begin{cases} h=height\\ a,b=\stackrel{parallel~sides}{bases}\\[-0.5em] \hrulefill\\ a=2\\ b=4\\ h=2 \end{cases}\implies \begin{array}{llll} A=\cfrac{2(2+4)}{2}\implies A=6 \\\\\\ \stackrel{\textit{twice that much}}{2A = 12} \end{array}](https://tex.z-dn.net/?f=%5Ctextit%7Barea%20of%20a%20trapezoid%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7Bh%28a%2Bb%29%7D%7B2%7D~~%20%5Cbegin%7Bcases%7D%20h%3Dheight%5C%5C%20a%2Cb%3D%5Cstackrel%7Bparallel~sides%7D%7Bbases%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20a%3D2%5C%5C%20b%3D4%5C%5C%20h%3D2%20%5Cend%7Bcases%7D%5Cimplies%20%5Cbegin%7Barray%7D%7Bllll%7D%20A%3D%5Ccfrac%7B2%282%2B4%29%7D%7B2%7D%5Cimplies%20A%3D6%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Btwice%20that%20much%7D%7D%7B2A%20%3D%2012%7D%20%5Cend%7Barray%7D)
Answer:
Yes, there are infinite triangles with the same three angles but different side lengths
Step-by-step explanation:
we know that
If two triangles are similar, then the ratio of its corresponding sides is proportional and its corresponding angles are congruent
therefore
There are infinite triangles with the same three angles but different side lengths
The correct answer is a function