1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
d1i1m1o1n [39]
3 years ago
8

Using the polynomials Q = 3 x2 + 5 x - 2, R = 2 - x2 , and S = 2 x + 5, perform the indicated operation.

Mathematics
1 answer:
marusya05 [52]3 years ago
4 0

Answer:

4x^2 + 3x - 9

Step-by-step explanation:

First, add together functions R(x) and S(x).  Stack them vertically and combine like terms:

R(x) = 2 - x^2

S(x) = 2x + 5

------------------

(R+S)(x) = -x^2 + 2x + 7

Now subtract the above result from Q(x):

Q(x) - (R(x) + S(x)) =  3x^2 + 5x - 2  + x^2 - 2x - 7, or 4x^2 + 3x - 9

You might be interested in
please help asappp!!! i need serious help with this pleaseee. whoever finishes it first and completes it and show how you got it
deff fn [24]

Answer:

Think of even square roots close to 27: the closest is 25 which has a square root of 5. Now think of the number with an even square root after 25: 36 which has a square root of 6. Since 27 is between 25 and 36, the square root of 27 would be between 5 and 6.

3 0
3 years ago
(6x-5y+4)dy+(y-2x-1)dx=0​
Len [333]

(6<em>x</em> - 5<em>y</em> + 4) d<em>y</em> + (<em>y</em> - 2<em>x</em> - 1) d<em>x</em> = 0

(6<em>x</em> - 5<em>y</em> + 4) d<em>y</em> = (2<em>x</em> - <em>y</em> + 1) d<em>x</em>

d<em>y</em>/d<em>x</em> = (2<em>x</em> - <em>y</em> + 1) / (6<em>x</em> - 5<em>y</em> + 4)

Let <em>X</em> = <em>x</em> - <em>a</em> and <em>Y</em> = <em>y</em> - <em>b</em>. We want to find constants <em>a</em> and <em>b</em> such that

d<em>Y</em>/d<em>X</em> = (a rational function)

where the numerator and denominator on the right side are free of constant terms. Substituting <em>x</em> and <em>y</em> in the equation, we have

d<em>Y</em>/d<em>X</em> = (2 (<em>X</em> + <em>a</em>) - (<em>Y</em> + <em>b</em>) + 1) / (6 (<em>X</em> + <em>a</em>) - 5 (<em>Y</em> + <em>b</em>) + 4)

d<em>Y</em>/d<em>X</em> = (2<em>X</em> - <em>Y</em> + 2<em>a</em> - <em>b</em> + 1) / (6<em>X</em> - 5<em>Y</em> + 6<em>a</em> - 5<em>b</em> + 4)

Then we solve for <em>a</em> and <em>b</em> in the system,

2<em>a</em> - <em>b</em> + 1 = 0

6<em>a</em> - 5<em>b</em> + 4 = 0

==>   <em>a</em> = -1/4 and <em>b</em> = 1/2

With these constants, the equation reduces to

d<em>Y</em>/d<em>X</em> = (2<em>X</em> - <em>Y</em>) / (6<em>X</em> - 5<em>Y</em>)

Now substitute <em>Y</em> = <em>VX</em> and d<em>Y</em>/d<em>X</em> = <em>X</em> d<em>V</em>/d<em>X</em> + <em>V</em> :

<em>X</em> d<em>V</em>/d<em>X</em> + <em>V</em> = (2<em>X</em> - <em>VX</em>) / (6<em>X</em> - 5<em>VX</em>)

The equation becomes separable after some simplification:

<em>X</em> d<em>V</em>/d<em>X</em> + <em>V</em> = (2 - <em>V</em>) / (6 - 5<em>V</em>)

<em>X</em> d<em>V</em>/d<em>X</em> = (2 - <em>V</em>) / (6 - 5<em>V</em>) - <em>V</em>

<em>X</em> d<em>V</em>/d<em>X</em> = (2 - <em>V</em> - (6 - 5<em>V</em>)) / (6 - 5<em>V</em>)

<em>X</em> d<em>V</em>/d<em>X</em> = (4<em>V</em> - 4) / (6 - 5<em>V</em>)

- (5<em>V</em> - 6) / (4<em>V</em> - 4) d<em>V</em> = 1/<em>X</em> d<em>X</em>

Integrate both sides:

-5/4 <em>V</em> + 1/4 ln|4<em>V</em> - 4| = ln|<em>X</em>| + <em>C</em>

Extract a constant from the logarithm on the left:

-5/4 <em>V</em> + 1/4 (ln(4) + ln|<em>V</em> - 1|) = ln|<em>X</em>| + <em>C</em>

-5/4 <em>V</em> + 1/4 ln|<em>V</em> - 1| = ln|<em>X</em>| + <em>C</em>

-5<em>V</em> + ln|<em>V</em> - 1| = 4 ln|<em>X</em>| + <em>C</em>

Get this back in terms of <em>Y</em> :

-5<em>Y/X</em> + ln|<em>Y/X</em> - 1| = 4 ln|<em>X</em>| + <em>C</em>

Now get the solution in terms of <em>y</em> and <em>x</em> :

-5 (<em>y</em> - 1/2)/(<em>x</em> + 1/4) + ln|(<em>y</em> - 1/2)/(<em>x</em> + 1/4) - 1| = 4 ln|<em>x</em> + 1/4| + <em>C</em>

<em />

With some manipulation of constants and logarithms, and a bit of algebra, we can rewrite this solution as

-5 (4<em>y</em> - 2)/(4<em>x</em> + 1) + ln|(4<em>y</em> - 4<em>x</em> - 3)/(4<em>x</em> + 1)| = 4 ln|<em>x</em> + 1/4| + 4 ln(4) + <em>C</em>

-5 (4<em>y</em> - 2)/(4<em>x</em> + 1) + ln|(4<em>y</em> - 4<em>x</em> - 3)/(4<em>x</em> + 1)| = 4 ln|4<em>x</em> + 1| + <em>C</em>

-5 (4<em>y</em> - 2)/(4<em>x</em> + 1) + ln|4<em>y</em> - 4<em>x</em> - 3| - ln|4<em>x</em> + 1| = 4 ln|4<em>x</em> + 1| + <em>C</em>

-5 (4<em>y</em> - 2)/(4<em>x</em> + 1) + ln|4<em>y</em> - 4<em>x</em> - 3| = 5 ln|4<em>x</em> + 1| + <em>C</em>

8 0
3 years ago
Write the expression below. Divide 9 by the sum of 6 and 4
IgorLugansk [536]
First add 6 &4 and you get ten then you divide 9 by 10 and get .9
5 0
3 years ago
Find the volume of the cylinder. What is the exact volume in terms of π? (diameter= 16m) Options a.) 1000pi cubic m b.) 1024pi c
Kazeer [188]
The volume for any cylinder, right or oblique, would be base x height. Even though an oblique cylinder looks quite different from a right cylinder, their volumes would be equal (given that their radius and height are equal). Think about it, the area of a parallelogram would equal the area of the rectangle if their heights and bases were the same, so that would apply for this also.

V= Bh
The base would stand for that top and bottom of the cylinder, or the circles. The volume for circle is pi x radius squared. 
V = \pi  r^{2}h
V = \pi256 x 16
V = \pi4096 m^{3}
6 0
3 years ago
How do you find the value of a number ​
VikaD [51]
We calculate it by multiplying the place value and face value of the digit. For instance: If we consider a number 45. Here the digit 4 is in the tens column.
7 0
3 years ago
Other questions:
  • A square pyramid has a height h and a base with a side length b. The side lengths of the base increase by 50%. Write a simplifie
    11·1 answer
  • Evaluate (-B)^2 for A = 5, B = -4, and C = 2.<br><br> A -4<br> B 16<br> C -16
    14·1 answer
  • What is the scale factor?<br>AFGH - AMNO<br>G<br>9​
    11·1 answer
  • 5,816-(382+298)=(5,816-382)-298
    11·1 answer
  • Find the area of the region under the graph of the function f on the interval
    11·1 answer
  • What is the radius of a circle with a circumference of 308 inches? Use pi= 22/7
    12·1 answer
  • Fifteen percent of the students at Central High take Spanish, 12% take French, and 4% take both. If a student is selected at ran
    6·1 answer
  • WILL GIVE BRAINLIEST!!!
    14·1 answer
  • Write an
    13·2 answers
  • 78 x 42 in area model and standard algorithm
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!