You intend to estimate a population mean μ from the following sample. 26.2 27.7 8.6 3.8 11.6 You believe the population is normally distributed. Find the 80% confidence interval. Enter your answer as an open-interval (i.e., parentheses) accurate to twp decimal places.
Answer:
The Confidence interval = (8.98 , 22.18)
Step-by-step explanation:
From the given information:
mean = ![\dfrac{ 26.2+ 27.7+ 8.6+ 3.8 +11.6 }{5}](https://tex.z-dn.net/?f=%5Cdfrac%7B%2026.2%2B%2027.7%2B%208.6%2B%203.8%20%2B11.6%20%7D%7B5%7D)
mean = 15.58
the standard deviation
= ![\sqrt{\dfrac{\sum(x_i - \mu)^2 }{n}}](https://tex.z-dn.net/?f=%5Csqrt%7B%5Cdfrac%7B%5Csum%28x_i%20-%20%5Cmu%29%5E2%20%7D%7Bn%7D%7D)
the standard deviation = ![\sqrt{\dfrac{(26.2 - 15.58)^2 +(27.7 - 15.58)^2 +(8.6 - 15.58)^2 + (3.8 - 15.58)^2 + (11.6 - 15.58)^2 }{5 } }](https://tex.z-dn.net/?f=%5Csqrt%7B%5Cdfrac%7B%2826.2%20%20-%2015.58%29%5E2%20%2B%2827.7%20-%2015.58%29%5E2%20%2B%288.6%20%20-%2015.58%29%5E2%20%2B%20%283.8%20%20-%2015.58%29%5E2%20%20%2B%20%2811.6%20%20-%2015.58%29%5E2%20%20%7D%7B5%20%7D%20%20%7D)
standard deviation = 9.62297
Degrees of freedom df = n-1
Degrees of freedom df = 5 - 1
Degrees of freedom df = 4
For df at 4 and 80% confidence level, the critical value t from t table = 1.533
The Margin of Error M.O.E = ![t \times \dfrac{\sigma}{\sqrt{n}}](https://tex.z-dn.net/?f=t%20%5Ctimes%20%5Cdfrac%7B%5Csigma%7D%7B%5Csqrt%7Bn%7D%7D)
The Margin of Error M.O.E = ![1.533 \times \dfrac{9.62297}{\sqrt{5}}](https://tex.z-dn.net/?f=1.533%20%5Ctimes%20%5Cdfrac%7B9.62297%7D%7B%5Csqrt%7B5%7D%7D)
The Margin of Error M.O.E = ![1.533 \times 4.3035](https://tex.z-dn.net/?f=1.533%20%5Ctimes%204.3035)
The Margin of Error M.O.E = 6.60
The Confidence interval = (
)
The Confidence interval = (
,
)
The Confidence interval = ( 15.58 - 6.60 , 15.58 + 6.60)
The Confidence interval = (8.98 , 22.18)