See explanation below.
Explanation:
The 'difference between roots and factors of an equation' is not a straightforward question. Let's define both to establish the link between the two..
Assume we have some function of a single variable
x
;
we'll call this
f
(
x
)
Then we can form an equation:
f
(
x
)
=
0
Then the "roots" of this equation are all the values of
x
that satisfy that equation. Remember that these values may be real and/or imaginary.
Now, up to this point we have not assumed anything about
f
x
)
. To consider factors, we now need to assume that
f
(
x
)
=
g
(
x
)
⋅
h
(
x
)
.
That is that
f
(
x
)
factorises into some functions
g
(
x
)
×
h
(
x
)
If we recall our equation:
f
(
x
)
=
0
Then we can now say that either
g
(
x
)
=
0
or
h
(
x
)
=
0
.. and thus show the link between the roots and factors of an equation.
[NB: A simple example of these general principles would be where
f
(
x
)
is a quadratic function that factorises into two linear factors.
1/2 Kg of Cherries
Give both 2/5 and 1/10 a common denominator- 10
4/10 + 1/10 = 5/10 = 1/2
Answer:
2x+50 and 5x-55 both are congruent or have same measure.
Step-by-step explanation:
Since we want to prove that both lines are parallel, this means no theorems that involve with parallel lines apply here.
First of, we know that AC is a straight line and has a measure as 180° via straight angle.
x+25 and 2x+50 are supplementary which means they both add up to 180°.
Sum of two measures form a straight line which has 180°.
Therefore:-
x+25+2x+50=180
Combine like terms:-
3x+75=180
Subtract 75 both sides:-
3x+75-75=180-75
3x=105
Divide both sides by 3.
x=35°
Thus, x = 35°
Then we substitute x = 35 in every angles/measures.
x+25 = 35°+25° = 60°
2x+50 = 2(35°)+50° = 70°+50° = 120°
5x-55 = 5(35°)-55 = 175°-55° = 120°
Since 2x+50 and 5x-55 have same measure or are congruent, this proves that both lines are parallel.
Answer:
2/5 (B)
Step-by-step explanation:
![x^\frac{1}{y}=\sqrt[y]{x}](https://tex.z-dn.net/?f=x%5E%5Cfrac%7B1%7D%7By%7D%3D%5Csqrt%5By%5D%7Bx%7D)
So:
because

Answer:
2 1/4 cups
Step by step:
First we can set up a ratio (1:4). Then we can divide both by 4 to find how many cups of almonds per cup of trail mix. We get 0.25:1. Multiply both by 9, and there’s the answer (2.25:9).
Hope this helped <3