Answer:
The products of cellular respiration are carbon dioxide, and energy.
Explanation:
Cellular respiration is the process of synthesizing cellular energy (ATP) from organic sources such as water, glucose and oxygen. These substances are processed through a series of steps in order to produce ATP. The main organelle responsible for ATP synthesis is the mitochondria.
<span>In plants, the photosynthetic pigment, chlorophyll, is found within chloroplasts. The process of photosynthesis is driven by light and carbon dioxide from the environment, converting these into glucose, water and energy. </span>
<span>photosynthesis occurs in chloroplasts </span>
<span>cellular respiration occurs in mitochondria</span>
Answer:
The mRNA strands go to the cytoplasm to meet ribosomes so protein synthesis can start.
Explanation:
In protein synthesis, the first step is to <em>synthesize messenger RNA</em>, mRNA. The coping process of the DNA section for the desired protein is called <u><em>transcription</em></u>, and it happens in the <em>nucleus</em>. After that, it occurs <em><u>translation</u></em>, when the formed <em>mRNA moves to the </em><em>cytoplasm</em> through the nucleus membrane pores. Protein synthesis is initiated in the cytoplasm when mRNA meets a free ribosome, the primary structure for protein synthesis. Ribosomes are made of <em>protein and ribosomal RNA</em> and can be found in the r<em>ough endoplasmic reticulum</em> or floating in the <em>cytosol</em>. They read the mRNA code and add the correct amino acid using <em>transference RNA</em> to build the protein. mARN has a <em>start and end codon</em> that tells where to start and stop adding amino acids. When the ribosome reaches the end codon, it means that protein synthesis is finished. The new protein is driven to the rough endoplasmic reticulum and translocated to the lumen. Once there, the protein suffers a few modifications, one of them is <em>folding</em> to become functional. Finally, protein is transported by vesicles to the Golgi complex, and from there to its final destiny.
Where are the answers?? Lol
Answer:
Tetraploid wheat evolved by allopolyploidization and subsequent diploid-like behavior due to cytological diploidization
Explanation:
Durum wheat (<em>Triticum durum</em>) or pasta wheat, is a tetraploid wheat species that has 28 chromosomes, i.e., seven pairs in each genome (2n = 4x = 28). Durum wheat was domesticated from wild emmer wheat, which originated by hybridization of two diploid wheat species with 14 chromosomes: <em>Triticum monococcum</em> (genome AA) and one wild progenitor (genome BB). <em>Triticum durum </em>is a typical example of evolution by hybridization and polyploidization, where the resultant tetraploid species has two complete sets of chromosomes. Allopolyploidization is one of the most common types of plant speciation. During meiosis, 28 chromosomes form 14 homologous chromosome pairs, because homologous chromosomes have developed 'restriction of pairing' (i.e., cytological diploidization). The restriction of pairing to fully homologous chromosomes ensures a correct meiotic behavior, which otherwise would be altered due to the high level of homology that still exists among chromosomes from different wheat progenitors.