Answer:
Step-by-step explanation:
A system of linear equations is one which may be written in the form
a11x1 + a12x2 + · · · + a1nxn = b1 (1)
a21x1 + a22x2 + · · · + a2nxn = b2 (2)
.
am1x1 + am2x2 + · · · + amnxn = bm (m)
Here, all of the coefficients aij and all of the right hand sides bi are assumed to be known constants. All of the
xi
’s are assumed to be unknowns, that we are to solve for. Note that every left hand side is a sum of terms of
the form constant × x
Solving Linear Systems of Equations
We now introduce, by way of several examples, the systematic procedure for solving systems of linear
equations.
Here is a system of three equations in three unknowns.
x1+ x2 + x3 = 4 (1)
x1+ 2x2 + 3x3 = 9 (2)
2x1+ 3x2 + x3 = 7 (3)
We can reduce the system down to two equations in two unknowns by using the first equation to solve for x1
in terms of x2 and x3
x1 = 4 − x2 − x3 (1’)
1
and substituting this solution into the remaining two equations
(2) (4 − x2 − x3) + 2x2+3x3 = 9 =⇒ x2+2x3 = 5
(3) 2(4 − x2 − x3) + 3x2+ x3 = 7 =⇒ x2− x3 = −1
Answer:
Test statistic = - 0.851063
- 2.520463
Step-by-step explanation:
H0 : μ ≥ 15
H1 : μ < 15
Sample mean, xbar = 14.5
Sample standard deviation, s = 4.7
Sample size = 64
Teat statistic :
(xbar - μ) ÷ (s/√(n))
(14.5 - 15) ÷ (4.7/√(64))
= - 0.851063
The critical value at α = 0.05
Using the T - distribution :
Degree of freedom, df = 64 - 1 = 63
Tcritical(0.05, 63) = 1.6694
Test statistic - critical value
-0.851063 - 1.6694
= - 2.520463
The answer is 39.60 all you have to do is add the 2 numbers together.
A square can be a rectangle but a rectangle can't be a square so seperate rectangles from triangles. since squares are special types of rectangles, they can go in the box of rectangles
Answer:
shuglot big math explain hoho mamam
Step-by-step explanation: