The two linear equations represented in system A as :
3 x + 2 y =3 -------(1)
- 2 x - 8 y = -1 ------(2)
(1) × 2 + (2) × 3 gives
⇒ 6 x + 4 y - 6 x - 24 y = 6 -3
⇒ - 20 y = 3
⇒ y = 
Putting the value of y in equation (1), we get

Two linear equation represented in system B is:
3. -x - 14 y =1
4. - 2 x - 8 y = -1
-2 ×Equation (3) + Equation (4)=
2 x +28 y- 2 x - 8 y= -2 -1
⇒ 20 y = -3
⇒y =
Putting the value of y in equation (3),we get

As Two system , that is system (A) and System (B) has same solution.
By looking at all the options , i found that Option (D) is correct. The two system will have the same solution because the first equation of System B is obtained by adding the first equation of System A to 2 times the second equation of System A.
<u><em>A</em></u> would be correct hope I helped.
The cost of the roll = 125 * 45 = 5625 cents
5625 / 100 = 56.25 $
Answer:
Follows are the solution to this question:
Step-by-step explanation:
In the given question some of the data is missing so, its correct question is defined in the attached file please find it.
Let
A is quality score of A
B is quality score of B
C is quality score of C
![\to P[A] =0.55\\\\\to P[B] =0.28\\\\\to P[C] =0.17\\](https://tex.z-dn.net/?f=%5Cto%20P%5BA%5D%20%3D0.55%5C%5C%5C%5C%5Cto%20P%5BB%5D%20%3D0.28%5C%5C%5C%5C%5Cto%20P%5BC%5D%20%3D0.17%5C%5C)
Let F is a value of the content so, the value is:
![\to P[\frac{F}{A}] =0.15\\\\\to P[\frac{F}{B}] =0.12\\\\\to P[\frac{F}{C}] =0.14\\](https://tex.z-dn.net/?f=%5Cto%20P%5B%5Cfrac%7BF%7D%7BA%7D%5D%20%3D0.15%5C%5C%5C%5C%5Cto%20P%5B%5Cfrac%7BF%7D%7BB%7D%5D%20%3D0.12%5C%5C%5C%5C%5Cto%20P%5B%5Cfrac%7BF%7D%7BC%7D%5D%20%3D0.14%5C%5C)
Now, we calculate the tooling value:
![\to p[\frac{C}{F}]](https://tex.z-dn.net/?f=%5Cto%20p%5B%5Cfrac%7BC%7D%7BF%7D%5D)
using the baues therom:
