Answer: 14 minutes
Step-by-step explanation:
Given: A tap pours
liters of water per minute.
To find : Time taken to fill an
liters capacity tank.
which is given by :-
Time =
minutes
minutes
minutes
minutes

Hence, it will take 14 minutes to fill an
liters capacity tank.
- you can use the pythagorean theorem for this.
a^2 + b^2 = c^2
12^2 + 16^2 = c^2
144 + 256 = c^2
400 = c^2
- square root this.
c = 20
therefore, x = 20.
so option C.
Hopefully you are able to clearly see the steps I have taken toward solving this problem in the attachment. In case you have trouble understanding what a reciprocal is, the reciprocal of a number is simply the number flipped. So, if you are given 1/2 and asked what the reciprocal is, it would be 2/1, or just 2. That being said, if you are given a whole number, simply remember that a whole number is ALWAYS equal to itself over one. So, in this case, the "sum of a number and its reciprocal" would be n +
1/n
Answer:
We have the matrix ![A=\left[\begin{array}{ccc}-4&-4&-4\\0&-8&-4\\0&8&4\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%26-4%26-4%5C%5C0%26-8%26-4%5C%5C0%268%264%5Cend%7Barray%7D%5Cright%5D)
To find the eigenvalues of A we need find the zeros of the polynomial characteristic 
Then
![p(\lambda)=det(\left[\begin{array}{ccc}-4-\lambda&-4&-4\\0&-8-\lambda&-4\\0&8&4-\lambda\end{array}\right] )\\=(-4-\lambda)det(\left[\begin{array}{cc}-8-\lambda&-4\\8&4-\lambda\end{array}\right] )\\=(-4-\lambda)((-8-\lambda)(4-\lambda)+32)\\=-\lambda^3-8\lambda^2-16\lambda](https://tex.z-dn.net/?f=p%28%5Clambda%29%3Ddet%28%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4-%5Clambda%26-4%26-4%5C%5C0%26-8-%5Clambda%26-4%5C%5C0%268%264-%5Clambda%5Cend%7Barray%7D%5Cright%5D%20%29%5C%5C%3D%28-4-%5Clambda%29det%28%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-8-%5Clambda%26-4%5C%5C8%264-%5Clambda%5Cend%7Barray%7D%5Cright%5D%20%29%5C%5C%3D%28-4-%5Clambda%29%28%28-8-%5Clambda%29%284-%5Clambda%29%2B32%29%5C%5C%3D-%5Clambda%5E3-8%5Clambda%5E2-16%5Clambda)
Now, we fin the zeros of
.

Then, the eigenvalues of A are
of multiplicity 1 and
of multiplicity 2.
Let's find the eigenspaces of A. For
:
.Then, we use row operations to find the echelon form of the matrix
![A=\left[\begin{array}{ccc}-4&-4&-4\\0&-8&-4\\0&8&4\end{array}\right]\rightarrow\left[\begin{array}{ccc}-4&-4&-4\\0&-8&-4\\0&0&0\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%26-4%26-4%5C%5C0%26-8%26-4%5C%5C0%268%264%5Cend%7Barray%7D%5Cright%5D%5Crightarrow%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%26-4%26-4%5C%5C0%26-8%26-4%5C%5C0%260%260%5Cend%7Barray%7D%5Cright%5D)
We use backward substitution and we obtain
1.

2.

Therefore,

For
:
.Then, we use row operations to find the echelon form of the matrix
![A+4I_3=\left[\begin{array}{ccc}0&-4&-4\\0&-4&-4\\0&8&8\end{array}\right] \rightarrow\left[\begin{array}{ccc}0&-4&-4\\0&0&0\\0&0&0\end{array}\right]](https://tex.z-dn.net/?f=A%2B4I_3%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%26-4%26-4%5C%5C0%26-4%26-4%5C%5C0%268%268%5Cend%7Barray%7D%5Cright%5D%20%5Crightarrow%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%26-4%26-4%5C%5C0%260%260%5C%5C0%260%260%5Cend%7Barray%7D%5Cright%5D)
We use backward substitution and we obtain
1.

Then,

5x-2y=30
the answer is if its by slope its going to be 5/2
it intersepts at -15 for the x asis is 0 and y asis -15 hte other set of x asis and y asis is 2/-10