1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
scoundrel [369]
4 years ago
9

(2x)^-1 how do u put this into a positive exponent and a fraction? 20 points

Mathematics
1 answer:
Naddika [18.5K]4 years ago
6 0

For this case we have that by definition of power properties it is fulfilled that:

a ^ {-1} = \frac {1} {a ^ 1} = \frac {1} {a}

Then, if we have the following expression:

(2x)^{ -1}

Applying the property, we can rewrite the expression as:

\frac {1} {(2x) ^ 1} = \frac {1} {2x}

Answer:

\frac {1} {2x}

You might be interested in
10) Explain how the domain of an expression can affect the solution to a sentence.
Novay_Z [31]

Answer:

The domain of a function is the set of all "input" or argument values for which the function is defined. This means the function provides an "output" or value for each member of the domain. Meaning a domain/input relates directly to an output.

Hope this helped :)

3 0
4 years ago
bob rides his bike how many miles will bob have traveled if he stops after 180 minutes continuing his same pattern?
Ksenya-84 [330]

Answer:

36 miles.

Step-by-step explanation:

If you look, each time can be divided by 5 to get the miles. 180/5 is 36, so the answer is 36 miles.

6 0
3 years ago
Read 2 more answers
Use the Pohlig–Hellman algorithm (Theorem 2.32) to solve the discrete logarithm problem gx = a in Fp in each of the following ca
qaws [65]

Answer:

(a) The solution is x=47.

(b) The solution is x=223755.

(c) The solution is x=33703314.

(d) The solution is x=984414.

Step-by-step explanation:

(a) Step 1 is to solve  

             

q    e        h = g^{ (p-1)} /q     b = a^{(p-1)} /q     h^{y} = b

2   4        265                   250                 Calculation I

3   3       374                    335                  Calculation II

Now Solving for calculation I:

x≡x_{0} +x_{1} q+…+x_{e-1} q^{e-1} (mod\ 2^{4} )≡0x_{0}+2x_{1} +4x_{2} +8x_{3} (mod\ 2^{4} )

Solve (265)x=250(mod 433) for x0,x1,x2,x3.

x0:(26523)x0=25023(mod 433)⟹(432)x0=432⟹x0=1

x1:(26523)x1=(250×265−x0)22(mod 433)=(250×265−1)22(mod433)=(250×250)22(mod 433)⟹(432)x1=432⟹x1=1

x2:(26523)x2=(250×265−x0−2x1)21(mod 433)=(250×265−3)22(mod 433)=(250×195)21(mod 433)⟹(432)x2=432⟹x2=1

x3:(26523)x3=(250×265−x0−2x1−4x2)20(mod 433)=(250×265−7)20(mod 433)=(250×168)20(mod 433)⟹(432)x3=432⟹x3=1

Thus, our first result is:

        x≡x0+2x1+4x2+8x3(mod24)≡1+2+4+8(mod24)≡15(mod24)

Now for Calculation II:

        x≡x_{0} +x_{1} q+…+x_{e-1} q^{e-1} (mod\ 3^{3} )≡ x_{0}*0+3x_{1} +9x_{2}  (mod3^{3})

 

Solve (374)x=335(mod 433) for x0,x1,x2.

x0:(37432)x0=33532(mod 433)⟹(234)x0=198⟹x0=2. Note: you only needed to test x0=0,1,2, so it is clear which one x0 is.

x1:(37432)x1=(335×374−x0)31(mod 433)=(335×374−2)31(mod 433)=(335×51)31(mod 433)=1(mod 433)⟹(234)x1=1(mod 433)⟹x1=0

x2:(37432)x2=(335×374−x0−3x1)30(mod 433)=(335×374−2)30(mod 433)=(335×51)30(mod 433)=198(mod 433)⟹(234)x2=198(mod 433)⟹x2=2. Note: you only needed to test x2=0,1,2, so it is clear which one x2 is.

Thus, our second result is:

           x≡x0+3x1+9x2(mod 33)≡2+0+9×2(mod 33)≡20(mod 33)

Step 2 is to solve

x ≡15 (mod 24 ),

x ≡20 (mod 33 ).

The solution is x=47.

(b) Step 1 is to solve

q       e              h = g^{ (p-1)} /q     b = a^{(p-1)} /q        h^{y} = b

2       10            4168                   38277              523

3        6              674719               322735           681  

h^{y} = b is calculated using same steps as in part(a).

Step 2 is to solve

x ≡ 523 (mod 210 ),

x ≡ 681 (mod 36 ).

The solution is x=223755 .

(c) Step 1 is to solve

q             e         h = g^{ (p-1)} /q     b = a^{(p-1)} /q                h^{y} = b

2             1         41022298               1                             0

29           5        4                              11844727              13192165

 

In order to solve the discrete logarithm problem modulo 295 , it is best to solve  it step by step. Note that 429 = 18794375 is an element of order 29 in F∗p . To  avoid notational confusion, we use the letter u for the exponents.

¢294

First solve 18794375u0 = 11844727

                                        = 987085.

The solution is u0 = 7.

The value of u so far is u = 7.

¢293

Solve 18794375u1 = 11844727·4−7

                               = 8303208.

The solution is u1 = 8.

The value of u so far is u = 239 = 7 + 8 · 29.

¢292

Solve 18794375u2 = 11844727 · 4−239

                                = 30789520.

The solution is

u2 = 26. The value of u so far is u = 22105 = 7 + 8 · 29 + 26 · 292 .

¢291

Solve 18794375u3 = 11844727 · 4−22105

                               = 585477.

The solution is

u3 = 18. The value of u so far is u = 461107 = 7 + 8 · 29 + 26 · 292 + 18 · 293 .

¢290

Solve 18794375u4 = 11844727 · 4−461107

                                = 585477.

The solution is

u4 = 18. The final value of u is u = 13192165 = 7 + 8 · 29 + 26 · 292 + 18 · 293 +  18 · 294 , which is the number you see in the last column of the table.

 

Step 2 is to solve

x ≡ 13192165 (mod 295 ).

x ≡ 0 (mod 2),

The solution is x=33703314 .

(d) Step 1 is to solve

q               e        h = g^{ (p-1)} /q     b = a^{(p-1)} /q     h^{y} = b

2               1           1291798           1                       0

709           1          679773             566657           322

911             1          329472            898549           534

To solve the DLP’s modulo 709 or 911, they can be easily solved by an exhaustive search on a computer, and a collision  algorithm is even faster.

Step 2 is to solve

x ≡ 0 (mod 2),

x ≡ 322 (mod 709),

x ≡ 534 (mod 911).

The solution is x=984414

3 0
3 years ago
Given |u| = 10 at ∠135° and |v| = 5 at ∠30°, what expression can be used to find |u + v|?
astraxan [27]

Answer:

B, 10^{2} + 5^{2}- 2(10)(5)cos(75)

Step-by-step explanation:

Using the law of cosines, which is c^{2}=a^{2}+b^{2}-2ab cos(C), you can simply insert all the values.

c=|u+v|

a= r value of u (10)

b= r value of v (5)

To find  C, you simply have to subtract v from u, and then subtract that number from 180 to find the reference angle.

I.E.: ∠135 - ∠30 = ∠105 ↔ 180 - 105 = 75 =  C

so, the completed equation would be 10^{2} + 5^{2}- 2(10)(5)cos(75)

5 0
3 years ago
Read 2 more answers
Find the exact value for the problem in the picture
Nataliya [291]
Your answer is C). Pi/4
6 0
4 years ago
Other questions:
  • May I please get the answer. not for homework or assignment.
    15·1 answer
  • The annual salaries of the ten employees of a small company are shown.
    14·1 answer
  • Write equation for (-6,5) and (-3,-3)
    13·1 answer
  • How do u write 1.02 as a fraction and a percent
    7·2 answers
  • Today, January 4th is the start of a brand new quarter, your starting fresh! What is a math goal that you have for yourself for
    8·2 answers
  • How many envelopes does Jane address in a day?
    13·2 answers
  • A scientist is working with 18 meters of gold wire. How long is the wire in millimeters?
    10·2 answers
  • In Minnesota, the current temperature is 35.7​ o​ F and is dropping 2.5​ o​ F every day. Greenland’s temperature is 25.2​ o​ F a
    5·1 answer
  • Question 7 of 10
    11·1 answer
  • Prove
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!