Step-by-step explanation:
what's the question ? it does not say.
I assume it is "how many packages of what size were sold ?"
x = number of small packages
y = number of medium packages sold
z = number of large packages sold
x + y + z = 9
7x + 12y + 15z = 86
y = 3z
these are the 3 equations we get out of the question.
we put the third equation into the other two :
x + 3z + z = x + 4z = 9
7x + 12×3z + 15z = 7x + 36z + 15z = 7x + 51z = 86
it of this first equation we get
x = -4z + 9
and putting that into the other equation :
7×(-4z + 9) + 51z = 86
-28z + 63 + 51z = 86
23z = 23
z = 1
y = 3z = 3×1 = 3
x = -4z + 9 = -4×1 + 9 = -4 + 9 = 5
so, 5 small, 3 medium and 1 large packages were sold.
Answer:
-2
Step-by-step explanation:
Given that:
A = (3, 4) ; B = (7, 6)
In triangle ABCD, AB and BC are Perpendicular lines :
Slope AB = Rise / Run = (y2 - y1) / (x2 - x1)
y2 = 6 ; y1 = 4 ; x2 = 7 ; x1 = 3
Slope AB = (6 - 4) / (7 - 3) = 2 / 4 = 1 / 2
To obtain the slope of BC:
RECALL:
product of the slope of 2 Perpendicular lines = - 1
Slope AB * Slope BC = - 1
1 / 2 * slope BC = - 1
Slope BC = - 1 ÷ 1/2
Slope BC = - 1 * 2/1
Slope BC = - 2
HENCE, slope of BC = - 2
From the figure shown, the interval is divided into 5 equal parts making each subinterval to be 0.2.
Part A:

The approximate the area of the region shown in the figure using the lower sums is given by:
![Area= [y(0.2)\times0.2]+[y(0.4)\times0.2]+[y(0.6)\times0.2]+[y(0.8)\times0.2] \\ +[y(1)\times0.2] \\ \\ =[\sqrt{1-(0.2)^2}\times0.2]+[\sqrt{1-(0.4)^2}\times0.2]+[\sqrt{1-(0.6)^2}\times0.2] \\ +[\sqrt{1-(0.8)^2}\times0.2]+[\sqrt{1-(1)^2}\times0.2] \\ \\ =(0.9798\times0.2)+(0.9165\times0.2)+(0.8\times0.2)+(0.6\times0.2)+(0\times0.2) \\ \\ =0.196+0.183+0.16+0.12=0.659](https://tex.z-dn.net/?f=Area%3D%20%5By%280.2%29%5Ctimes0.2%5D%2B%5By%280.4%29%5Ctimes0.2%5D%2B%5By%280.6%29%5Ctimes0.2%5D%2B%5By%280.8%29%5Ctimes0.2%5D%20%5C%5C%20%2B%5By%281%29%5Ctimes0.2%5D%20%5C%5C%20%20%5C%5C%20%3D%5B%5Csqrt%7B1-%280.2%29%5E2%7D%5Ctimes0.2%5D%2B%5B%5Csqrt%7B1-%280.4%29%5E2%7D%5Ctimes0.2%5D%2B%5B%5Csqrt%7B1-%280.6%29%5E2%7D%5Ctimes0.2%5D%20%5C%5C%20%2B%5B%5Csqrt%7B1-%280.8%29%5E2%7D%5Ctimes0.2%5D%2B%5B%5Csqrt%7B1-%281%29%5E2%7D%5Ctimes0.2%5D%20%5C%5C%20%20%5C%5C%20%3D%280.9798%5Ctimes0.2%29%2B%280.9165%5Ctimes0.2%29%2B%280.8%5Ctimes0.2%29%2B%280.6%5Ctimes0.2%29%2B%280%5Ctimes0.2%29%20%5C%5C%20%20%5C%5C%20%3D0.196%2B0.183%2B0.16%2B0.12%3D0.659)
Part B:
The approximate the area of the region shown in the figure using the lower sums is given by:
![Area= [y(0)\times0.2]+[y(0.2)\times0.2]+[y(0.4)\times0.2]+[y(0.6)\times0.2] \\ +[y(0.8)\times0.2] \\ \\ =[\sqrt{1-(0)^2}\times0.2]+[\sqrt{1-(0.2)^2}\times0.2]+[\sqrt{1-(0.4)^2}\times0.2] \\ +[\sqrt{1-(0.6)^2}\times0.2] +[\sqrt{1-(0.8)^2}\times0.2] \\ \\ =(1\times0.2)+(0.9798\times0.2)+(0.9165\times0.2)+(0.8\times0.2)+(0.6\times0.2) \\ \\ =0.2+0.196+0.183+0.16+0.12=0.859](https://tex.z-dn.net/?f=Area%3D%20%5By%280%29%5Ctimes0.2%5D%2B%5By%280.2%29%5Ctimes0.2%5D%2B%5By%280.4%29%5Ctimes0.2%5D%2B%5By%280.6%29%5Ctimes0.2%5D%20%5C%5C%20%2B%5By%280.8%29%5Ctimes0.2%5D%20%5C%5C%20%5C%5C%20%3D%5B%5Csqrt%7B1-%280%29%5E2%7D%5Ctimes0.2%5D%2B%5B%5Csqrt%7B1-%280.2%29%5E2%7D%5Ctimes0.2%5D%2B%5B%5Csqrt%7B1-%280.4%29%5E2%7D%5Ctimes0.2%5D%20%5C%5C%20%2B%5B%5Csqrt%7B1-%280.6%29%5E2%7D%5Ctimes0.2%5D%20%2B%5B%5Csqrt%7B1-%280.8%29%5E2%7D%5Ctimes0.2%5D%20%5C%5C%20%5C%5C%20%3D%281%5Ctimes0.2%29%2B%280.9798%5Ctimes0.2%29%2B%280.9165%5Ctimes0.2%29%2B%280.8%5Ctimes0.2%29%2B%280.6%5Ctimes0.2%29%20%5C%5C%20%5C%5C%20%3D0.2%2B0.196%2B0.183%2B0.16%2B0.12%3D0.859)
Part C:
The approximate area of the given region is given by
Answer:
b would be the awnser
Step-by-step explanation:
im guessing
Answer:
10
Step-by-step explanation:
ans is 10
because 2×5 is 10