Answer:
Greedy is an algorithmic paradigm that builds up a solution piece by piece, always choosing the next piece that offers the most obvious and immediate benefit. Greedy algorithms are used for optimization problems. An optimization problem can be solved using Greedy if the problem has the following property: At every step, we can make a choice that looks best at the moment, and we get the optimal solution of the complete problem.
If a Greedy Algorithm can solve a problem, then it generally becomes the best method to solve that problem as the Greedy algorithms are in general more efficient than other techniques like Dynamic Programming. But Greedy algorithms cannot always be applied. For example, the Fractional Knapsack problem (See this) can be solved using Greedy, but 0-1 Knapsack cannot be solved using Greedy.
The following are some standard algorithms that are Greedy algorithms.
1) Kruskal’s Minimum Spanning Tree (MST): In Kruskal’s algorithm, we create an MST by picking edges one by one. The Greedy Choice is to pick the smallest weight edge that doesn’t cause a cycle in the MST constructed so far.
2) Prim’s Minimum Spanning Tree: In Prim’s algorithm also, we create an MST by picking edges one by one. We maintain two sets: a set of the vertices already included in MST and the set of the vertices not yet included. The Greedy Choice is to pick the smallest weight edge that connects the two sets.
3) Dijkstra’s Shortest Path: Dijkstra’s algorithm is very similar to Prim’s algorithm. The shortest-path tree is built up, edge by edge. We maintain two sets: a set of the vertices already included in the tree and the set of the vertices not yet included. The Greedy Choice is to pick the edge that connects the two sets and is on the smallest weight path from source to the set that contains not yet included vertices.
4) Huffman Coding: Huffman Coding is a loss-less compression technique. It assigns variable-length bit codes to different characters. The Greedy Choice is to assign the least bit length code to the most frequent character. The greedy algorithms are sometimes also used to get an approximation for Hard optimization problems. For example, the Traveling Salesman Problem is an NP-Hard problem. A Greedy choice for this problem is to pick the nearest unvisited city from the current city at every step. These solutions don’t always produce the best optimal solution but can be used to get an approximately optimal solution.
There are multiple things that effect the speed of your computer such as the processer, RAM, and what is on the computer itself. The first question would be to figure out what might be slowing down your computer and the reason for needing the increase in speed. This will tell you what part you need and the steps to take.
Answer:
No, the packets did not arrive in the right order but the TCP protocol reordered the packets. The transmission took a while, but the message was finally delivered.
Explanation:
Packets are chunks of data from a data source or message transmitted from one computer device to another. Protocols like TCP or transmission control protocol and UDP (user datagram protocol) are used for data transfer, with TCP as the more reliable protocol (it checks for errors, retransmit lost packets, and reorders received packets in the destination device) and slow protocol.
Answer:
Microsoft PowerPoint software
Explanation:
PowerPoint is the worlds mosth popular program to create slides and charts for the office stuffs .
You might need a new 02 sensor and i really dont know about the vacuum leak.