Answer:
The domain of function
is set of all real numbers.
Domain: (-∞,∞)
Step-by-step explanation:
Given:


the domain of both the above functions is all real number.
To find domain of :

Substituting functions
and
to find 

The product can be written as difference of squares. ![[a^2-b^2=(a+b)(a-b)]](https://tex.z-dn.net/?f=%5Ba%5E2-b%5E2%3D%28a%2Bb%29%28a-b%29%5D)
∴ 
The degree of the function
is 2 as the exponent of leading term
is 2. Thus its a quadratic equation.
For any quadratic equation the domain is set of all real numbers.
So Domain of
is (-∞,∞)
A relation is a function if each element of the domain is paired with exactly one element of the range. ... If given a table, or a set of ordered pairs, you can look to see if any value of the domain has more than one corresponding value in the range.
tbh google
The answer is $113 because you add the money