<h2> ☞ANSWER☜ </h2>
The right triangle has one 90 degree angle and two acute (< 90 degree) angles. Since the sum of the angles of a triangle is always 180 degrees... The two sides of the triangle that are by the right angle are called the legs... and the side opposite of the right angle is called the hypotenuse.
An acute angle is an angle that measures less than 90 degrees. A triangle formed by all angles measuring less than 90˚ is also known as an acute triangle. For example, in an equilateral triangle, all three angles measure 60˚, making it an acute triangle.
Answer:
There are 100 pennies in one dollar.
Step-by-step explanation:
Answer:
<em>Camera 2nd has to cover the maximum angle, i.e. </em>
.
Step-by-step explanation:
Please have a look at the triangular park represented as a triangle
with sides
a = 110 ft
b = 158 ft
c = 137 ft
1st camera is located at point C, 2nd camera at point B and 3rd camera at point A respectively.
We can use law of cosines here, to find out the angles ![\angle A, \angle B, \angle C](https://tex.z-dn.net/?f=%5Cangle%20A%2C%20%5Cangle%20B%2C%20%5Cangle%20C)
As per Law of cosine:
![cos C = \dfrac{a^{2}+b^2-c^2 }{2ab}\\cos B = \dfrac{a^{2}+c^2-b^2 }{2ac}\\cos A = \dfrac{b^{2}+c^2-a^2 }{2bc}](https://tex.z-dn.net/?f=cos%20C%20%3D%20%5Cdfrac%7Ba%5E%7B2%7D%2Bb%5E2-c%5E2%20%7D%7B2ab%7D%5C%5Ccos%20B%20%3D%20%5Cdfrac%7Ba%5E%7B2%7D%2Bc%5E2-b%5E2%20%7D%7B2ac%7D%5C%5Ccos%20A%20%3D%20%5Cdfrac%7Bb%5E%7B2%7D%2Bc%5E2-a%5E2%20%7D%7B2bc%7D)
Putting the values of a,b and c to find out angles
.
![cos C = \dfrac{110^{2}+158^2-137^2 }{2\times 110 \times 158}\\\Rightarrow cos C = \dfrac{12100+24964-18769 }{24760}\\\Rightarrow cos C =0.526\\\Rightarrow C = 58.24^\circ](https://tex.z-dn.net/?f=cos%20C%20%3D%20%5Cdfrac%7B110%5E%7B2%7D%2B158%5E2-137%5E2%20%7D%7B2%5Ctimes%20110%20%5Ctimes%20158%7D%5C%5C%5CRightarrow%20cos%20C%20%3D%20%5Cdfrac%7B12100%2B24964-18769%20%7D%7B24760%7D%5C%5C%5CRightarrow%20cos%20C%20%3D0.526%5C%5C%5CRightarrow%20C%20%3D%2058.24%5E%5Ccirc)
![cos B = \dfrac{110^{2}+137^2-158^2 }{2\times 110 \times 137}\\\Rightarrow cos B = \dfrac{12100+18769 -24964}{30140}\\\Rightarrow cos B = \dfrac{5905}{30140}\\\Rightarrow cos B =0.196\\\Rightarrow B = 78.70^\circ](https://tex.z-dn.net/?f=cos%20B%20%3D%20%5Cdfrac%7B110%5E%7B2%7D%2B137%5E2-158%5E2%20%7D%7B2%5Ctimes%20110%20%5Ctimes%20137%7D%5C%5C%5CRightarrow%20cos%20B%20%3D%20%5Cdfrac%7B12100%2B18769%20-24964%7D%7B30140%7D%5C%5C%5CRightarrow%20cos%20B%20%3D%20%5Cdfrac%7B5905%7D%7B30140%7D%5C%5C%5CRightarrow%20cos%20B%20%3D0.196%5C%5C%5CRightarrow%20B%20%3D%2078.70%5E%5Ccirc)
![cos A = \dfrac{158^{2}+137^2-110^2 }{2\times 158 \times 137}\\\Rightarrow cos A = \dfrac{24964+18769-12100}{43292}\\\Rightarrow cos A = \dfrac{31633}{43292}\\\Rightarrow cos A = 0.731\\\Rightarrow A = 43.05^\circ](https://tex.z-dn.net/?f=cos%20A%20%3D%20%5Cdfrac%7B158%5E%7B2%7D%2B137%5E2-110%5E2%20%7D%7B2%5Ctimes%20158%20%5Ctimes%20137%7D%5C%5C%5CRightarrow%20cos%20A%20%3D%20%5Cdfrac%7B24964%2B18769-12100%7D%7B43292%7D%5C%5C%5CRightarrow%20cos%20A%20%3D%20%5Cdfrac%7B31633%7D%7B43292%7D%5C%5C%5CRightarrow%20cos%20A%20%3D%200.731%5C%5C%5CRightarrow%20A%20%3D%2043.05%5E%5Ccirc)
<em>Camera 2nd has to cover the maximum angle</em>, i.e.
.
Answer:
alternate interior..............