Answer: The two specific conjectures are in the first image, and the two general conjectures are in the second image.
Answer:
20
Step-by-step explanation:
For the sake of the problem, let's make female workers "x" and male workers "y".
x+y<40 This equation shows that the total number of workers has a max of 40.
30x+20y<1,000 This equation shows that the total cost the manager pays ($30 to each woman, $20 to each man) has a max of $1,000.
Now you can solve for x and y.
X+y<40
-y -y
X<-y+40
Substitute -y+40 in for X in the second equation
30(-y+40)+20y<1,000
-30y+1200+20y<1,000 Distribute
-10y+1,200<1,000 Combine like terms
-10y<-200 Subtract 1,200
y>20 Divide by -10; flip the sign
Since y>20, and y=male workers, you now know that the minimum
number of male workers he should send is 20
For the answer to the question above, I'll provide my solutions to my answers for the problem below.
(–2x3y2 + 4x2y3 – 3xy4) – (6x4y – 5x2y3 – y5)
(−2x3)(y2)+4x2y3+−3xy4+−1(6x4y)+−1(−5x2y3)+−1(−y5)
(−2x3)(y2)+4x2y3+−3xy4+−6x4y+5x2y3+y5
−2x3y2+4x2y3+−3xy4+−6x4y+5x2y3+y5
−2x3y2+4x2y3+−3xy4+−6x4y+5x2y3+y5
(−6x4y)+(−2x3y2)+(4x2y3+5x2y3)+(−3xy4)+(y5)
−6x4y+−2x3y2+9x2y3+−3xy4+y5
So the answer is,
= <span><span><span><span><span>−<span><span>6x4</span>y</span></span>−<span><span>2x3</span>y2</span></span>+<span><span>9x2</span>y3</span></span>−<span>3xy4</span></span>+y5</span>
I hope this helps
The anser would be 500 with the exponet of 100 solve my multiplying
Answer:
£125000
Step-by-step explanation:
Original cost of house = £100 000
Percent increase = 25%
Increase in price = 25% of 100,000
Increase in price = 0.25 * 100,000
Increase in price = 25000
New cost = original cost + Increment
New cost = 100,000 + 25,000
New cost = 125,000
Hence it now cost £125000