The assortment of homologous chromosomes during meiosis is random and generates genetic variation, the raw material for evolution.
During metaphase I of meiosis, homologous chromosomes are lined up at the equator plate of the cell in order to be separated (assorted) in anaphase I.
The separation of homologous chromosomes during meiosis I is random. Daughter cells receive unique gene combinations from an original parent cell.
Subsequently, haploid cells got from two successive meiotic divisions fuse during fecundation to form a diploid (2n) zygote.
During prophase I, non-sister chromatids interchange genetic material by a process known as recombination. This genetic process also increases genetic variation in daughter cells.
In conclusion, the assortment of homologous chromosomes during meiosis is random and generates genetic variation.
the answer to this problem is c
The animal prepares for the hibernation ahead of time gathering food and eating so that it can sleep for the extended period of time without leaving
Answer:
Use the rule that 10% of the energy is transferred between layers.
Explanation:
Energy is transferred between layers of a food pyramid. That means that the producers at the bottom of the pyramid (e.g. green plants) provide energy to the primary consumers (e.g. rabbits), which are eaten by and provide energy to the secondary consumers (e.g. foxes).
However, very little of the energy is actually transferred to the next layer, roughly 10%. So an easy way to calculate the energy available at each level is to calculate 10% of what was available from the previous level. So if there is 600 kJ available from the primary consumers, then 60 kJ are transferred to the secondary consumers