Answer:
x < 6
Step-by-step explanation:
1) -5x > -30
2) divide both sides by -5
3) flip the sign as we divided inequality by a negative
4) x < 6
a) (2a - b)² = (4a² - 4ab + b²)
b) (10m - n²)² = (100m² - 20mn² + n⁴)
c) (4x - 4²) = (16x² - 8x + 4⁴)
d)
e)

f)

The max occurs when length=width
so
perimiter=16
and L=W
P=2(L+W)
16=2(L+L)
16=2(2L)
16=4L
4=L
the dimentions are length and width are 4 meters
aera will be 16 square meters
Answer:
1.544*10⁹ Linebackers would be required in order to obtain the same density as an alpha particle
Step-by-step explanation:
Assuming that the pea is spherical ( with radius R= 0.5 cm= 0.005 m), then its volume is
V= 4/3π*R³ = 4/3π*R³ = 4/3*π*(0.005 m)³ = 5.236*10⁻⁷ m³
the mass in that volume would be m= N*L (L= mass of linebackers=250Lbs= 113.398 Kg)
The density of an alpha particle is ρa= 3.345*10¹⁷ kg/m³ and the density in the pea ρ will be
ρ= m/V
since both should be equal ρ=ρa , then
ρa= m/V =N*L/V → N =ρa*V/L
replacing values
N =ρa*V/L = 3.345*10¹⁷ kg/m³ * 5.236*10⁻⁷ m³ /113.398 Kg = 1.544*10⁹ Linebackers
N=1.544*10⁹ Linebackers
Answer:
Step-by-step explanation:
Y=1/3y+-5/3