A) an equilateral triangle
A) an equilateral triangleA) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangleA) an equilateral triangle
A) an equilateral triangleA) an equilateral triangle
A) an equilateral triangleA) an equilateral triangleA) an equilateral triangle
A) an equilateral triangleA) an equilateral triangle
A) an equilateral triangleA) an equilateral triangle
A) an equilateral triangle
A) an equilateral triangleA) an equilateral triangle
<span>A) an equilateral triangle</span>
Answer:
<h2>$388.36</h2>
Step-by-step explanation:
let us assume that the amount in her accounts compounds annually
Given data
principal p= $160
interest rate r= 3%= 0.03
time t= 30 years
At the end of 30 years the money she will will have can be expressed as
A= P(1+r)^t
A= 160(1+0.03)^30
A= 160(1.03)^30
A= 160*2.42726
A= $388.36
in 30 years she will have $388.36
Answer:
17/50
Step-by-step explanation:
1) Percent to fraction
34/100
2) Reduce
17/50