Answer:
Let's define two transformations.
Vertical translation.
If we have a function f(x), a vertical translation of N untis is written as:
g(x) = f(x) + N
If N is positive, then the translation is upwards
If N is negative, then the translation is downwards.
Horizontal translation.
If we have a function f(x), a horizontal translation of N units is written as:
g(x) = f(x - N)
if N is positive, then the translation is to the right
If N is negative, then the translation is to the left.
Now we have a function g(x) that is a transformation of a parent function f(x) (we actually do not know which parent function, so i assume f(x) = x^2) such that we have a shift right 5 units and up 3 units.
Then:
g(x) = f(x - 5) + 3
and again, using f(x) = x^2
g(x) = (x - 5)^2 + 3
By Stokes' theorem,

where

is the circular boundary of the hemisphere

in the

-

plane. We can parameterize the boundary via the "standard" choice of polar coordinates, setting

where

. Then the line integral is


We can check this result by evaluating the equivalent surface integral. We have

and we can parameterize

by

so that

where

and

. Then,

as expected.
Answer:
106.8
Step-by-step explanation:
126.16÷106.8
thank you
Explain more plez i dont under shand this anymore
When its gets closer, it gets larger