Answer:
a = 2, b = - 3, c = - 8
Step-by-step explanation:
Expand f(x) = a(x + b)² + c and compare coefficients of like terms, that is
a(x + b)² + c ← expand (x + b)² using FOIL
= a(x² + 2bx + b²) + c ← distribute parenthesis by a
= ax² + 2abx + ab² + c
Compare like terms with f(x) = 2x² - 12x + 10
Compare coefficients x² term
a = 2
Compare coefficients of x- term
2ab = - 12, substitute a = 2
2(2)b = - 12
4b = - 12 ( divide both sides by 4 )
b = - 3
Compare constant term
ab² + c = 10 , substitute a = 2, b = - 3
2(- 3)² + c = 10
18 + c = 10 ( subtract 18 from both sides )
c = - 8
Then a = 2, b = - 3, c = - 8
Step-by-step explanation:
I don't know the answer to this one so could someone please tell me
Thanks
Answer:
5(a+b+c+d)
Step-by-step explanation:
<em>this</em><em> is</em><em> </em><em>correct</em><em> </em><em>another</em><em> </em><em>way </em><em>of </em><em>writing</em><em> </em><em>this</em><em> </em><em>expression</em>
<em> </em><em> </em><em>because </em><em>5</em><em> </em><em>is </em><em>common</em><em> </em><em>to </em><em>all </em><em>and </em><em>we </em><em>can </em><em>put </em><em>it </em><em>out</em>
<em>hope</em><em> it</em><em> helps</em>