1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Hitman42 [59]
3 years ago
8

Find the angle between the angle bisectors of a linear pair.

Mathematics
2 answers:
valentinak56 [21]3 years ago
4 0

Answer:

The angle between the angle bisectors of the angles in a linear pair is 90°

Step-by-step explanation:

NISA [10]3 years ago
4 0

Answer:

the angle between bisector and linear is 90. Have a great day

Step-by-step explanation:

You might be interested in
Question 5 You and a friend share a pizza cut into 8 equal slices. Suppose you each eat 3 slices. What
iren2701 [21]

Answer:

3/8

Step-by-step explanation:

8 0
3 years ago
I Calculate each value of angle A to the nearest degree. ​
Masteriza [31]

Answer: I think the answer is 127 if it is wrong i am so sorry

Don't forget drop a heart.

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
How many moles are in 2.75 x 10^23​ atoms of Sulfur ? please show steps
zimovet [89]

Answer:

2.75x(1023)

=2.75*x*1e+23

=2.7499999999999997e+23*x

=2.7499999999999997e+23x

Step-by-step explanation: Hope this help

5 0
3 years ago
Filbert makes $14 per hour. If he makes time and a half for overtime, how much will he make for working 63 hours?
Marina CMI [18]

Answer:

$1323.00

Step-by-step explanation:

A simple equation that can be used to figure this out is:

p*1.5*o=t

The variables mean:

p- hourly pay

o- hours worked overtime

t- total amount of money earned.

(Also, the 1.5 is always used to calculate overtime, no matter what job, unless otherwise specified, and as referred in the problem as "time and a half").

So, to finally work out this problem:

($14*1.5)*63=?

first, (14*1.5)= $21

($21*63)= $1323.

4 0
3 years ago
The indicated function y1(x) is a solution of the associated homogeneous equation. Use the method of reduction of order to find
9966 [12]

Answer:

<em>The particular integral of given differential equation</em>

<em>                  </em>y_{p} = \frac{1}{4} ( x - (\frac{-5}{4} ) (1))<em></em>

<em> General solution of given differential equation</em>

<em>      </em>y = y_{c} + y_{p}<em></em>

<em>  </em>Y (x) = C_{1} e^{x} + C_{2} e^{4x} + \frac{1}{4} ( x + (\frac{5}{4} ))<em></em>

<em></em>

Step-by-step explanation:

<u><em>Step(i)</em></u>:-

Given Differential equation  y'' − 5 y' + 4 y = x

Given equation in operator form

        D²y - 5 Dy +  4 y = x

⇒     ( D² - 5 D +  4 ) y =x

⇒    f(D) y = Q

where  f(D) = D² - 5 D +  4 and Q(x) = x

<em>The auxiliary equation  f(m) =0</em>

<em>           m²-5 m + 4 =0</em>

         m² - 4 m - m + 4 =0

        m ( m -4 ) -1 ( m-4) =0

         (m - 1) =0   and ( m-4) =0

        <em> m = 1 and m =4</em>

<em>The complementary function </em>

<em></em>Y_{c} = C_{1} e^{x} + C_{2} e^{4x}<em></em>

<u><em>Step(ii)</em></u>:-

<u><em>particular integral</em></u>

<em>Particular integral</em>

<em>     </em>y_{p} = \frac{1}{f(D)} Q(x) = \frac{1}{D^{2}  - 5 D +  4} X<em></em>

<em>taking common '4' </em>

<em>                          </em>= \frac{1}{4(1 +  (\frac{D^{2}  - 5 D}{4} ))} X<em></em>

<em>                         </em>

<em>                           </em>=\frac{1}{4}  (1 + (\frac{D^{2} -5D}{4})^{-1} )} X<em></em>

<em>applying binomial expression</em>

<em>      ( 1 + x )⁻¹    = 1 - x + x² - x³ +.....       </em>

<em>                          </em>=\frac{1}{4}  (1 - (\frac{D^{2} -5D}{4}) +((\frac{D^{2} -5D}{4})^{2} -...} )X<em></em>

<em>Now simplifying and we will use notation D = </em>\frac{dy}{dx}<em></em>

<em>                        </em>=\frac{1}{4}  (x - (\frac{D^{2} -5D}{4})x +((\frac{D^{2} -5D}{4})^{2}(x) -...}<em></em>

<em>Higher degree terms are neglected</em>

<em>                     </em>=\frac{1}{4}  (x - (\frac{ -5 D}{4}) x)<em></em>

<em>The particular integral of given differential equation</em>

<em>                  </em>y_{p} = \frac{1}{4} ( x - (\frac{-5}{4} ) (1))<em></em>

<u><em>Final answer</em></u><em>:-</em>

<em>          General solution of given differential equation</em>

<em>      </em>y = y_{c} + y_{p}<em></em>

<em>  </em>Y (x) = C_{1} e^{x} + C_{2} e^{4x} + \frac{1}{4} ( x + (\frac{5}{4} ))<em></em>

<em></em>

<em></em>

<em>         </em>

<em> </em>

     

4 0
3 years ago
Other questions:
  • 75.32 rounded to the nearest tenth
    11·2 answers
  • Claire is a manager at a toy packaging company. The company packs 80 boxes of toys every hour for the first 3 hours of the day.
    6·2 answers
  • Can fractions still be considered natural, whole, integers, rational, irrational, or real numbers?
    12·1 answer
  • Help help help me with this it is an emergency for you guys to help me plz ASAP
    14·2 answers
  • Factories:<br><br>y(x+y)-(1+x)​
    6·2 answers
  • Hiii please help i’ll give you brainliest if you show your work as well
    14·1 answer
  • A line is represented by the equation y= 2/3x+1. What is the slope of the line with that equation
    6·1 answer
  • Solve equation for the given variable
    11·2 answers
  • Please answer this question
    11·1 answer
  • Write the percent as a decimal.<br><br> 78% =
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!