Answer:
Negative five and negative three
If you sketch the man and the building on paper, you'll have a
right triangle. The right angle is the point where the wall of
the building meets the ground. The height of the building
is one leg of the triangle, the line on the ground from the
building to the man's feet is the other leg, and the line
from his feet to the top of the building is the hypotenuse.
We need to find the angle at his feet, between the hypotenuse
and the leg of the triangle.
Well, the side opposite the angle is the height of the building -- 350ft,
and the side adjacent to the angle is the distance from him to the
building -- 1,000 ft.
The tangent of the angle is (opposite) / (adjacent)
= (350 ft) / (1,000 ft) = 0.350 .
To find the angle, use a book, a slide rule, a Curta, or a calculator
to find the angle whose tangent is 0.350 .
tan⁻¹(0.350) = 19.29° . (rounded)
Answer:
ok the answer is: p=-4
Step-by-step explanation:
First you distribute 3 times p-4 and get 8-3p+12=2p then you add 12 plus 8 and get 20 then you have 20-3p=2p you have to add 3p on both sides and you get 20= -5p you divide and get p= -4
Answer:
69.14% probability that the diameter of a selected bearing is greater than 84 millimeters
Step-by-step explanation:
According to the Question,
Given That, The diameters of ball bearings are distributed normally. The mean diameter is 87 millimeters and the standard deviation is 6 millimeters. Find the probability that the diameter of a selected bearing is greater than 84 millimeters.
- In a set with mean and standard deviation, the Z score of a measure X is given by Z = (X-μ)/σ
we have μ=87 , σ=6 & X=84
- Find the probability that the diameter of a selected bearing is greater than 84 millimeters
This is 1 subtracted by the p-value of Z when X = 84.
So, Z = (84-87)/6
Z = -3/6
Z = -0.5 has a p-value of 0.30854.
⇒1 - 0.30854 = 0.69146
- 0.69146 = 69.14% probability that the diameter of a selected bearing is greater than 84 millimeters.
Note- (The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X)