Answer:
1,3,9
Gcf: 9
Step-by-step explanation:
Answer: 2 lbs of cherries
Cherries = $5 per pound
Oranges = $2 per pound
Total Cost = $18
Total weight = 6 lb
------------------------------------
Define x and y
------------------------------------
Let x be the number of lb of cherries
Let y be the number of lb of oranges
------------------------------------
Construct equations
------------------------------------
x + y = 6 ---------------------------- (1)
5x + 2y = 18 ---------------------------- (2)
------------------------------------------------------------------------
Solve x and y
------------------------------------------------------------------------
From equation (1):
x + y = 6
x = 6 - y
------------------------------------------------------------------------
Substitute x = 6 - y into equation 2
------------------------------------------------------------------------
5x + 2y = 18
5 (6 - y) + 2y = 18
30 - 5y + 2y = 18
3y = 30 - 18
3y = 12
y = 4
------------------------------------------------------------------------
Substitute y = 4 into equation (1)
------------------------------------------------------------------------
x + y = 6
x + 4 = 6
x = 2
------------------------------------------------------------------------
Find the weight of cherries and oranges
------------------------------------------------------------------------
Cherry = x = 2 lb
Oranges = y = 4 lbs
------------------------------------------------------------------------
Answer: Alex bought 2 lb of cherries
------------------------------------------------------------------------
The given function f(x) = |x + 3| has both an absolute maximum and an absolute minimum.
What do you mean by absolute maximum and minimum ?
A function has largest possible value at an absolute maximum point, whereas its lowest possible value can be found at an absolute minimum point.
It is given that function is f(x) = |x + 3|.
We know that to check if function is absolute minimum or absolute maximum by putting the value of modulus either equal to zero or equal to or less than zero and simplify.
So , if we put |x + 3| = 0 , then :
± x + 3 = 0
±x = -3
So , we can have two values of x which are either -3 or 3.
The value 3 will be absolute maximum and -3 will be absolute minimum.
Therefore , the given function f(x) = |x + 3| has both an absolute maximum and an absolute minimum.
Learn more about absolute maximum and minimum here :
brainly.com/question/17438358
#SPJ1
The price of the sweater was reduced by 40%.
Answer:
es tal vez otra vez se repite la pregunta