The answer should be D
The reason why is because they are in parentheses so it’s going to be a sum and the two different coefficients are 4 and 7
Answer:
z = 8.544[cos(20.6) + isin(20.6)}
Step-by-step explanation:
Given
8 + 3i
Required
Rewrite in trigonometric form.
The trigonometric form of a complex equation is
z = r[cosθ + isinθ]
Let a = 3 and b = 8
Where
r is calculated by
r² = b² + a²
And
θ is calculated by
θ = arctan(a/b)
Substituting 3 for a and 8 for b
r² = a² + b² becomes
r² = 3² + 8²
r² = 9 + 64
r² = 73
√r² = √73
r = √73
r = 8.544
Calculating θ
θ = arctan(a/b) becomes
θ = arctan(3/8)
θ = arctan(0.375)
θ = 20.556°
θ = 20.6 --- Approximated
Hence, z = r[cosθ + isinθ] becomes
z = 8.544[cos(20.6) + isin(20.6)}
Answer:
440miles
Step-by-step explanation:
We are told that mileage of 165 = 3/8 of a tank of gas
as inverse 5/8 would be left and the product we seek to add to 165.
We find a ratio to distribute 165 as 3/8
First we double and find 6/8 is an even number and = 330 miles.
= 3/4 ratio and that is 6:8 so 2 extra we seek to make a full tank before we add is 1/3 of 330 miles as 1/3 = 2/8 to make this balance only in this question is this possible as we call it distribution like percentage 10% added to 100 would always be 10 just like it is added, but finding 10% of 110 is different.
Therefore so would 1/3 afterwards once we find 1/3 = 2/8 is not the same as finding 1/3 after we find the full tank.
1/3 of 330 = 110
110 +330 = 440miles
I hope that helps you see how to work out close range distribution.
As now not that it's asking you to see 1/3 of 440miles but in same principal as explained about the 10% theory, you see 1/3 of 440 miles is now more than 110. it is 1/3 x 440 = 146.66 = 1/3. and so we can prove distribution is possible and say 2/8 = 1/3 even though in relation to 1 as a whole number its not true. It's only true in distribution.
Answer:
$111,600
Step-by-step explanation:
8% of $90,000 is $7,200
$7,200 x 3 = $21,600
90,000 + 21,600 = $111,600
Answer:
√106
Step-by-step explanation:
<em>to </em><em>calculate</em><em> </em><em>the </em><em>distance</em><em> between</em><em> </em><em>two </em><em>points</em><em> </em><em>on </em><em>an </em><em>xoy </em><em>plane </em><em>you </em><em>use </em><em>the </em><em>formula</em>
<em>√</em><em>(</em><em>x2-x1</em><em>)</em><em>²</em><em>+</em><em>(</em><em>y2-y1</em><em>)</em><em>²</em>
<em>in </em><em>this </em><em>case </em><em>x1 </em><em>is </em><em>-</em><em>5</em><em>,</em><em>x2 </em><em>is </em><em>4</em><em>,</em><em>y1 </em><em>is </em><em>-</em><em>3</em><em> </em><em>and </em><em>y2 </em><em>is </em><em>-</em><em>2</em><em> </em><em>therefore</em><em> </em><em>the </em><em>solution</em><em> will</em><em> be</em>
<em>√</em><em>(</em><em>4</em><em>-</em><em>(</em><em>-</em><em>5</em><em>)</em><em>²</em><em>+</em><em>(</em><em>-</em><em>2</em><em>-</em><em>3</em><em>)</em><em>²</em>
<em>√</em><em>(</em><em>4</em><em>+</em><em>5</em><em>)</em><em>²</em><em>+</em><em>(</em><em>-</em><em>5</em><em>)</em><em>²</em>
<em>√</em><em>(</em><em>9</em><em>)</em><em>²</em><em>+</em><em>(</em><em>-</em><em>5</em><em>)</em><em>²</em>
<em>√</em><em>8</em><em>1</em><em>+</em><em>2</em><em>5</em>
<em>√</em><em>1</em><em>0</em><em>6</em>
<em>I </em><em>hope</em><em> this</em><em> helps</em>