Answer:
20
Step-by-step explanation:
(f + g)(x) = f(x) + g(x)
f(x) + g(x) = 3x² - 2 + 4x + 2 = 3x² + 4x
Substitute x = 2 into f(x) + g(x)
(f + g)(2) = 3(2)² + 4(2) = (3 × 4) + 8 = 12 + 8 = 20
I'd suggest using "elimination by addition and subtraction" here, altho' there are other approaches (such as matrices, substitution, etc.).
Note that if you add the 3rd equation to the second, the x terms cancel out, and you are left with the system
- y + 3z = -2
y + z = -2
-----------------
4z = -4, so z = -1.
Next, multiply the 3rd equation by 2: You'll get -2x + 2y + 2z = -2.
Add this result to the first equation. The 2x terms will cancel, leaving you with the system
2y + 2z = -2
y + z = 4
This would be a good time to subst. -1 for z. We then get:
-2y - 2 = -2. Then y must be 0. y = 0.
Now subst. -1 for z and 0 for y in any of the original equations.
For example, x - (-1) + 3(0) = -2, so x + 1 = -2, or x = -3.
Then a tentative solution is (-3, -1, 0).
It's very important that you ensure that this satisfies all 3 of the originale quations.
the answer to 1/3 times 3/4 is 1/4
Answer:
The answer is below
Step-by-step explanation:
Let x represent the number of single cone ice cream and let y represent the number of double cone ice cream.
Since the vendor stocks a maximum of 70 single cones and a maximum of 45 double cones. hence:
0 < x ≤ 70, 0 < y ≤ 45 (1)
The vendor expects to sell no more than 50 ice creams, hence:
x + y ≤ 50
Plotting the constraint using geogebra online graphing tool, we can see that the solution to the problem is at (5, 45)
Since the vendor sells single-cone ice-creams for $3 and double-cone ice-creams for $4.50, hence:
Revenue = 3x + 4.5y
At the point (5, 45), the revenue is:
Revenue = 3(5) + 4.5(45) = $217.5
The area of a hexagon is
A= a^2 (3√3)/2
we replace a with 4
A=41.57