1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sladkih [1.3K]
2 years ago
10

The area of the square adjacent to two sides of a right triangle are 29.25 square units and 13 units 30 POINTS

Mathematics
1 answer:
Otrada [13]2 years ago
6 0

Answer:

x=6.5\ units

Step-by-step explanation:

step 1

Find the length side of the smaller square

The area of the square is equal to

A=a^{2}

so

a^{2}=13

a=\sqrt{13}\ units

step 2

Find the length side of the larger square

The area of the square is equal to

A=b^{2}

so

b^{2}=29.25

b=\sqrt{29.25}\ units

step 3

Find the value of x

Applying the Pythagoras Theorem

x^{2} =a^{2}+b^{2}

substitute the values

x^{2} =13+29.25

x^{2} =42.25

x=6.5\ units

You might be interested in
Please help me quickly
DaniilM [7]

Answer:

0.4

Step-by-step explanation:

Find square root of 12 and 15

12=3.46 rounded to 3.5

15=3.87 rounded to 3.9

0.9-0.5=0.4

5 0
2 years ago
40% of _ =$10:00<br><br> A $0.25<br> B $4.00<br> C $25.00<br> D $40.00<br> E none of these
True [87]
B $4.00
...............
4 0
3 years ago
Read 2 more answers
If <img src="https://tex.z-dn.net/?f=%5Cmathrm%20%7By%20%3D%20%28x%20%2B%20%5Csqrt%7B1%2Bx%5E%7B2%7D%7D%29%5E%7Bm%7D%7D" id="Tex
Harman [31]

Answer:

See below for proof.

Step-by-step explanation:

<u>Given</u>:

y=\left(x+\sqrt{1+x^2}\right)^m

<u>First derivative</u>

\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If  $f(g(x))$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=f'(g(x))\:g'(x)$\\\end{minipage}}

<u />

<u />\boxed{\begin{minipage}{5 cm}\underline{Differentiating $x^n$}\\\\If  $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=xn^{n-1}$\\\end{minipage}}

<u />

\begin{aligned} y_1=\dfrac{\text{d}y}{\text{d}x} & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{2x}{2\sqrt{1+x^2}} \right)\\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{x}{\sqrt{1+x^2}} \right) \\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}} \right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^{m-1}  \cdot \left(x+\sqrt{1+x^2}\right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m\end{aligned}

<u>Second derivative</u>

<u />

\boxed{\begin{minipage}{5.5 cm}\underline{Product Rule for Differentiation}\\\\If  $y=uv$  then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}

\textsf{Let }u=\dfrac{m}{\sqrt{1+x^2}}

\implies \dfrac{\text{d}u}{\text{d}x}=-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}

\textsf{Let }v=\left(x+\sqrt{1+x^2}\right)^m

\implies \dfrac{\text{d}v}{\text{d}x}=\dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^m

\begin{aligned}y_2=\dfrac{\text{d}^2y}{\text{d}x^2}&=\dfrac{m}{\sqrt{1+x^2}}\cdot\dfrac{m}{\sqrt{1+x^2}}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}\\\\&=\dfrac{m^2}{1+x^2}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\\\\ &=\left(x+\sqrt{1+x^2}\right)^m\left(\dfrac{m^2}{1+x^2}-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\right)\\\\\end{aligned}

              = \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\right)\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)

<u>Proof</u>

  (x^2+1)y_2+xy_1-m^2y

= (x^2+1) \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]

= \left(x+\sqrt{1+x^2}\right)^m\left[0]

= 0

8 0
1 year ago
Using this table below, what is the rate of change? Don't forget to include your units.
NeX [460]
(24,18)(28,21)
slope(rate of change) = (21 - 18) / (28 - 24) = 3/4 <==
3 0
3 years ago
Answer the photo below thanks <br> Question: What is the value of x in the diagram.
kaheart [24]

Answer:

A. X = 30º

Step-by-step explanation:

The angle labeled x & the right angle are vertical angles to the one labeled 120º.

Therefore:

X + 90 = 120

Solve for x:

X + (90-90) = 120 - 90

X = 30

Hope this helps! Have a great day!

6 0
3 years ago
Other questions:
  • Is x=-2 calculate the value of x2 +2x
    14·1 answer
  • a family paid $19,200 as a down payment for a home. if this represents 12% of the price of the home, find the price of the home
    10·2 answers
  • Solve and simplify <br> 2/5+1/4+7/10=
    5·2 answers
  • You estimate 120 to deliver materials to a construction site.One company offers 1/3 of the cost that you estimated. How many wil
    12·1 answer
  • Which inequality about the number line shown below is true?
    14·1 answer
  • Honest answers please. I need to know how to do it.
    8·2 answers
  • True or false. log 10 14,000,000 is between 7 and 8
    8·1 answer
  • 1/2(b-6)=5 <br> Whats B?<br> And how did you get it??
    6·1 answer
  • If the ratio of boys to girls on the team is 2:3and there are 12 girls how many boys are there?
    10·1 answer
  • Name the coefficient in the expression below -10+8
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!