1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kenny6666 [7]
3 years ago
11

If y varies directly as x, and the constant is -3, what is the equation?

Mathematics
2 answers:
vladimir1956 [14]3 years ago
5 0

Answer:

y = -3x

Explanation:

k = -3

y ¤ x......where ¤ represents the Greek alpha sign

y = k • x

y = -3 • x

y = -3x

katovenus [111]3 years ago
4 0

is there a picture with this problem?

You might be interested in
A company offered one half of its employees a bonus if the production of light bulbs increased by 20%. The other half of the emp
Katen [24]
Answer:
c. C, E, A, B, D
3 0
3 years ago
Mark borrowed $5,500 at 11.5 percent for five years. What is his monthly payment?
olya-2409 [2.1K]
Use the formula of the present value of an annuity ordinary which is
Pv=pmt [(1-(1+r/k)^(-kn))÷(r/k)]
Pv present value 5500
PMT monthly payment?
R interest rate 0.115
K compounded monthly 12
N time 5years
Solve the formula for PMT
PMT=Pv÷ [(1-(1+r/k)^(-kn))÷(r/k)]
PMT=5,500÷((1−(1+0.115÷12)^(
−12×5))÷(0.115÷12))
=120.95

So the answer is C

Hope it helps!
5 0
3 years ago
Read 2 more answers
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
3 years ago
The midpoint of AB is M(-5,1). If the coordinates of A are (-4,-5), what are the coordinates of B?
Elenna [48]

<u>ANSWER:</u>

The midpoint of AB is M(-5,1). The coordinates of B are (-6, 7)

<u>SOLUTION: </u>

Given, the midpoint of AB is M(-5,1).  

The coordinates of A are (-4,-5),  

We need to find the coordinates of B.

We know that, mid-point formula for two points A(x_{1}, y_{1}) and B (x_{1}, y_{2}) is given by

M\left(x_{3}, y_{3}\right)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)

Here, in our problem, \mathrm{x}_{3}=-5, \mathrm{y}_{3}=1, \mathrm{x}_{1}=-4 \text { and } \mathrm{y}_{1}=-5

Now, on substituting values in midpoint formula, we get

(-5,1)=\left(\frac{-4+x_{2}}{2}, \frac{-5+y_{2}}{2}\right)

On comparing, with the formula,

\frac{-4+x_{2}}{2}=-5 \text { and } \frac{-5+y_{2}}{2}=1

-4+\mathrm{x}_{2}=-10 \text { and }-5+\mathrm{y}_{2}=2

\mathrm{x}_{2}=-6 \text { and } \mathrm{y}_{2}=7

Hence, the coordinates of b are (-6, 7).

5 0
4 years ago
For what value of c does the following system have no solution?<br><br> 1/2x+1/5y=2<br> 5x+2y=c
Minchanka [31]

Answer:

Step-by-step explanation:

\frac{1}{2}x+\frac{1}{5}y = 2 \mid 5x + 2y = c

First let's multiply the 1st equation by 10.

5x + 2y = 20 \mid 5x + 2y = c

So, we can see that the equations have the same coefficients and that implies  they are equal.

So the equation has no solutions for. c \in R \setminus{20}

3 0
3 years ago
Read 2 more answers
Other questions:
  • An eagle was at an altitude of 1450 m. The eagle decreased its altitude to 1200 m. What was the percent decrease in the altitude
    9·1 answer
  • Carly paid $17.50 for 7 gallons of gas and Jade paid $45 for 15 gallons of gas. Which of the following statements is true?
    14·1 answer
  • A triangle has side lengths 24, 32, and 42. is it a right triangle? explain.
    10·2 answers
  • If f=(9/5 x c ) +32 85c =__f
    10·2 answers
  • A fast-food restaurant has an automated beverage machine that dispenses a set amount of liquid based on a size setting. Suppose
    15·1 answer
  • 50 percent of 65 is approximately equal to ________.
    13·2 answers
  • Solve the system algebraically. 2x+ y - 10 = 0 x - y - 4 = 0 What is the value of y? 1/3 2/3 14/3
    13·2 answers
  • Find all solutions to
    5·1 answer
  • Which measurement is most accurate to describe the distance from Los Angeles to New York City?
    11·2 answers
  • The Sum of the angles of a regular<br>polygon is 2 520". How many sides does<br>the polygon have?​
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!