<u>Question</u>:
Which value is being measured in the columns labeled "Fraction remaining” and "Percentage remaining”?
-
years of decay
- quantity of energy
- number of stable atoms
- amount of material that has not decayed
<u>Answer</u>:
"Amount of material that has not decayed" being measured in the columns labelled "Fraction remaining” and "Percentage remaining”
<u>Explanation</u>:
The table shown below having explains about the half life , the amount of sample in both fraction and percentage. The first column named half life elapsed tells us the the number of half life that that is completed. Half life is the time taken for an element to reduce or decay into half of its initial amount.
The fraction remaining column gives the amount of sample that is left behind after the half life particular number of half life has completed. similarly the percentage remaining column gives the amount of sample in percentage. For example, the 5th row tells us that after 4 half life is over
of the sample remained. In percentage it is 6.25%
Answer:
The sunflower plants shown are the same species. The differences in
height among the plants is an example of variation
Explanation:
Variation entails difference in a condition which is exactly what happened as regards sunflower plant with different height
Are there choices to choose from, because that is a very general question?
When neurons are not producing electrical signals we say that they are at resting phase: voltage across their membrane is called the resting membrane potential, or the resting potential.
This potential is determined by the concentration of ions (Na, K) across the membrane and by membrane permeability to each type of ion. While the ions move through channels down their gradients they lead to a separation of charge and that is what creates the resting potential.
The membrane of the neuron is much more permeable for K ions so the resting potential is close to the equilibrium potential of K+.
That is TRUE, which makes updating maps extremely easy and convenient, not to mention it's the key element in GPS systems.