<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em>⤴</em>
<em>Hope</em><em> </em><em>this</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>.</em>
Answer:
Kindly check explanation
Step-by-step explanation:
Since the triangle is right angled ; we can solve for x using Pythagoras :
x = hypotenus ; hence ;
x² = opposite² + adjacent²
x² = 15² + 8²
x² = 225 + 64
x² = 289
x = √289
x = 17
Using Trigonometry :
Sin D = side opposite D / hypotenus = 8/17
Cos D = side Adjacent D / hypotenus = 15 / 17
Tan D = side opposite D / Adjacent side = 8/15
Sin F = side opposite F / hypotenus = 15/17
Cos F = side Adjacent F / hypotenus = 8 / 17
Tan F = side opposite F / Adjacent side = 15/8
The function composed with its inverse (g⁻¹) result in x
basically
(g⁻¹o g)(x)=x
so
(g⁻¹o g)(4)=4
Answer/Step-by-step explanation:
The corresponding segments of two similar figures are always proportional to each other. I'm other words, the ratio of their corresponding segments are equal.
The figures shown above in this question are not similar figures because their segments are not proportional to each other.
This is because:
DE/KL ≠ FG/MN
DE = 2 units
KL = 1 unit
FG = 1 unit
MN = 1 unit
DE/KL = 2/1 = 2
FG/MN = 1/1 = 1
Thus, DE/KL ≠ FG/MN.
Therefore, the figures are not similar.